

AFOEHL REPORT 90-045EQ00047DSC



AD-A222 389

Combined Wastewater Characterization and Hazardous Waste Survey
Davis-Monthan AFB AZ

ROBERT D. BINOVI, Lt Col, USAF, BSC NANCY S. HEDGECOCK, 1Lt, USAF, BSC CHARLES ATTEBERY, 1Lt, USAF, BSC

**April 1990** 

**Final Report** 



Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC)
Human Systems Division
Brooks Air Force Base, Texas 78235-5501

90 05 23 008

#### NOT ICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any other obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available for the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Air Force installations may direct requests for copies of this report to: Air Force Occupational and Environmental Health Laboratory (AFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161.

West D Bron

ROBERT D. BINOVI, Lt Col, USAF, BSC Chief, Environmental Quality Division

# REPORT DOCUMENTATION. PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average. Nour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA. 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, C. C. 20503.

| 1. AGENCY USE ONLY (Leave blank)                                                                                | 2. REPORT DATE<br>April 1990                                                                                  | 3. REPORT TYPE AN Final 1                                                  | D DATES COVERED<br>9 Jun - 7 Jul 89                                      |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 4. TITLE AND SUBTITLE Combined Wastewater Chara Waste Survey, Davis-Month 6. AUTHOR(5) Lt Col R./Binovi, llt N/ | han AFB AZ                                                                                                    |                                                                            | 5. FUNDING NUMBERS                                                       |
| 7. PERFORMING ORGANIZATION NAME<br>AF Occupational and Envi:<br>Brooks AFB TX 78235-5501                        |                                                                                                               | boratory                                                                   | 8. PERFORMING ORGANIZATION REPORT NUMBER  AFOEHL Report 90-045EQ00047DSC |
| 9. SPONSORING/MONITORING AGENCY                                                                                 | NAME(S) AND ADDRESS(ES)                                                                                       |                                                                            | 10. SPONSORING / MONITORING<br>AGENCY REPORT NUMBER                      |
| 11. SUPPLEMENTARY NOTES N/A                                                                                     |                                                                                                               |                                                                            |                                                                          |
| 12a. DISTRIBUTION / AVAILABILITY STATE                                                                          | В                                                                                                             |                                                                            | 12b. DISTRIBUTION CODE                                                   |
|                                                                                                                 | vironmental Quality<br>e purpose of the su<br>de basic data for t<br>w measurements were<br>tions. A total of | Division.at Dav<br>rvey was to find<br>he subsequent do<br>taken at 17 loc | esign of a wastewater<br>cations and wastewater                          |

Recommendations include (1) some separators need cleaning and proper disposal of the contents, (2) action to change phenol analysis method for compliance monitoring should continue, (3) continue restrictions on use of compounds containing forms of phenols, (4) design of pretreatment system should include processes for the removal of metals and priority organic compounds, and (5) eliminate the discharge of Rinsolve 140 to the sanitary sewer system, as it may be contributing to the apparent phenolic concentrations determined by EPA Method 420. (Sixo)

| 14. SUBJECT TERMS Wastewater Characteri Davis-Monthan Bir | lstics Phenols In                           | dustrial Wastes                            | 15. NUMBER OF PAGES 267 16. PRICE CODE |
|-----------------------------------------------------------|---------------------------------------------|--------------------------------------------|----------------------------------------|
| 17. SECURITY CLASSIFICATION<br>OF REPORT                  | 16. SECURITY CLASSIFICATION<br>OF THIS PAGE | 15. SECURITY CLASSIFICATION<br>OF AESTRACT | 26. LIMITATION OF AESTRACT             |
| Unclassified                                              | Unclassified                                | Unclassified                               | None                                   |

NSN 7540-01-280-5500

)

Standard Form 198 Rev. Library

# Acknowledgments

The authors greatly appreciate the technical expertise and hard work provided by the other members of our survey team, without whose valuable assistance this survey could never have been accomplished.

We also acknowledge 1Lt Paul Legendre and the staff of the Bioenvironmental Engineering Section for the support given us during the survey. Thanks for making our time at Davis-Monthan AFB enjoyable and worthwhile.



| Acces | sion Fo            | r   |     |
|-------|--------------------|-----|-----|
| NTIS  | GRA&I              |     |     |
| DTIC  | tab                |     |     |
| Unann | ounced             |     |     |
| Justi | ficatio            | n   |     |
|       | ibution<br>labilit |     | des |
|       | Avail a            | •   | or  |
| Dist  | Spec               | lal |     |
| A-1   |                    |     |     |

# CONTENTS

|      |        |                                                                                     | age           |
|------|--------|-------------------------------------------------------------------------------------|---------------|
|      |        | m 298<br>ledgment<br>rations                                                        | i<br>iii<br>V |
| I.   | INTROD | UCTION                                                                              | 1             |
| II.  | DISCUS | SION                                                                                | 1             |
|      | B. AF  | ckground<br>OEHL Wastewater Characterization<br>zardous Waste Survey                | 1<br>3<br>10  |
| III. | RESULT | S                                                                                   | 21            |
|      |        | stewater Characterization<br>mmary of Waste Disposal Practices at Davis-Monthan AFB | 21<br>35      |
| IV.  | CONCLU | SIONS                                                                               | 36            |
| V.   | RECOMM | ENDATIONS                                                                           | 40            |
|      | Refere | nces                                                                                | 42            |
|      | APPEND | IX                                                                                  |               |
|      | A      | Chemical Waste Disposal Form                                                        | 43            |
|      | В      | Summary of Waste Disposal Practices For Each Waste Category                         | 53            |
|      | C      | Wastes Disposed As Hazardous Waste At Davis-Monthan AFB                             | 61            |
|      | D      | Wastes Discharged to the Sanitary Sewer At Davis-Monthan AFB                        | 65<br>69      |
|      | E<br>F | Master List of Shops                                                                | 73            |
|      | r<br>G | Disposal Practices by Shop for Davis-Monthan AFB                                    | 85<br>85      |
|      | H      | Wastewater Analytical Data Industrial Wastewater Bench Scale Laboratory Results     | 247           |
|      | I      | Volatile Organic Results                                                            | 251           |
|      | J      | Sample Report of Analysis                                                           | 257           |
|      | Distri | bution List                                                                         | 261           |

# ILLUSTRATIONS

| Table  | Title                                                       | Page |
|--------|-------------------------------------------------------------|------|
| 1      | Pretreatment Discharge Limits                               | 2    |
| 2      | Flow Monitoring Sites                                       | 5    |
| 3      | Sample Site Locations                                       | 6    |
| 4      | Wastewater Characterization Analytical Methods              | 9    |
| 5      | Annual Forecasted Quantities of Waste Generated at          |      |
|        | Davis-Monthan AFB                                           | 11   |
| 6      | Flow Results                                                | 23   |
| 7      | Phenol Results by Method                                    | 37   |
| 8      | Candidates for Connection to Industrial Pretreatment System | 38   |
| Figure |                                                             |      |
| 1      | Flow Meter Set Up at Site 16                                | 5    |
| 2      | On-site Laboratory, Building 4819                           | 8    |
| 3      | Wastewater Flow Distribution                                | 22   |
| 4      | Aircraft Washrack and Separator, Site 40                    | 30   |

### I. INTRODUCTION

On 12 May 1989, HQ TAC/SGPB sent a message requesting AFOEHL conduct a basewide wastewater characterization study at the earliest possible date. The study was needed to support a Military Construction Project (MCP) to construct a wastewater treatment plant needed to meet the Pima County Discharge Ordinance Industrial Wastewater Discharge Limits. A request for a waste minimization survey at ALC/AMARC had also been received by AFOEHL and combined into the scope of this survey.

The objectives of the survey were to determine the sources of phenols in the wastewater through sampling and hazardous waste surveys, provide basic design data, and perform a waste minimization survey at AMARC as requested.

The survey was conducted from 19 June to 7 July 1989 by the following members of the Environmental Quality Branch, Consultant Services Division:

LTC Robert Binovi Cpt David Goldblum 1Lt Shelia Scott 1Lt Charles Attebery 2Lt Nancy Hedgecock MSgt John Randall MSgt Ben Hernandez SSgt Mary Fields SSgt Roberto Rolon Sgt Pete Davis

#### II. DISCUSSION

### A. Background

#### 1. Base Description

Davis-Monthan AFB, the home of the 355th Tactical Training Wing, located near Tucson, in the eastern portion of Pima County, in the southern part of the State of Arizona. Base population is about 10,000. The weather is characteristically sunny and hot. The average high temperature during the period of the survey was 103 degrees, the average low was 74 degrees, 0.05 inches of rain fell during this time? ame.

## 2. Wastewater Regulations

Pima County regulates the discharge of industrial wastewater by permit 2R 10760, which expired on 1 January 90. The permit regulates combined industrial and sanitary wastewater at manhole 111 (First St and Durango St), hospital wastewater at manhole 376, and combined sanitary and industrial wastewater from the Aerospace Maintenance and Regeneration Center (AMARC). Discharge limits are presented in Table 1.

Table 1. Pretreatment Discharge Limits

| Parameters |                               | MH 111 | Location<br>MH376 | мн337 |
|------------|-------------------------------|--------|-------------------|-------|
| рН         |                               | 6-9    | 6-9               | 6-9   |
| Arsenic (  | mg/L)                         | 2.0    | NR                | 2.0   |
| Barium (   | mg/L)                         | 10.0   | 10.0              | 10.0  |
| Cadmium (  | mg/L)                         | 0.1    | NR                | 0.1   |
| Chromium ( | mg/L)                         | 2.77   | NR                | 2.77  |
| Copper (   | mg/L                          | 2.7    | NR                | 2.7   |
| Lead (     | mg/L                          | 0.5    | NR                | 0.5   |
| Mercury (  | mg/L                          | 0.05   | 0.05              | 0.05  |
| Nickel (   | mg/L                          | 3.98   | NR                | 398   |
| Silver (   | mg/L)                         | NR     | 5.0               | NR    |
| Zinc (     | (mg/L)                        | 2.6    | NR                | 2.6   |
| Phenols (  | mg/L)                         | 0.05   | 0.05              | 0.05  |
| Cyanide (  | (mg/L)                        | 1.0    | NR                | 1.0   |
|            | .c Organics<br>ods 624 & 625) | SNR    | NR                | SNR   |
| Purgeable  | Halocarbons                   | NR     | SNR               | NR    |
| Biochemica | al Oxygen Demand              | NR     | SNR               | NR    |
| Chemical C | Oxygen Demand                 | NR     | SNR               | NR    |
| Oil & Grea | ase (mg/L)                    | 100    | NR                | NR    |

NOTE: NR = Sampling not required, no limits established SNR = Samples required, no limits established

The base has expended considerable effort in trying to meet the phenol and metals limits. The base banned the use of certain phenoxyl detergents and pine oil by stock number in an October 1986 836th AD/CC policy letter. (1) The base set up a system to test products for phenolic concentrations after it was issued a notice of violation for exceeding the limit. Despite these efforts, phenols were still exceeding Pima County pretreatment limits.

Controversy over which method of phenol analysis should be used to monitor compliance resulted in base and Pima County officials petitioning the State to change the method from EPA Method 420 to EPA Method 604. Their petition was denied, despite information from detergent and photographic manufacturers that the EPA Method is subject to false positive readings from petroleum hydrocarbons and hydroquinones.(2,3)

### 3. Previous Surveys

A study by CWC-HDR, Inc., Irvine, California (4) was conducted in the Spring of 1988 with the stated purpose of determining whether organic and phenol discharges to the sanitary sewer system are from readily identifiable sources, and whether source control or localized pretreatment plants can be utilized. Of particular concern to CWC-HDR were total phenols and total toxic organics as measured by EPA Methods 624 and 625. The report stated that Pima County Wastewater Management Department (PCWMD) had notified the base that no concentrations of total toxic organics would be permitted in the near future, and that the limitation of 50  $\mu g/L$  total phenol applies to the industrial wastewater discharge, and thus the discharge limitation should be adjusted downward to factor out the influence of domestic flow. Based on an assumed ratio of 50% domestic and 50% aircraft related flows, PCWMD proposed the limitation be reduced to 25 mg/L.

The contractor concluded that phenols were problematic throughout the system, with pentachlorophenol the most significant. Also total toxic organics were not present in high concentrations. Source control or separation of sources and treatment would not result in significant reduction of the phenol concentrations.

Specifically, from the Phoenix Street Sewer and Flight Line Sewer (AFOEHL sites 16-40), methylene chloride was entering between manholes 258 and 262. Trichloroethylene was entering between manholes 262 ND 267-B. Phenols were entering between manholes 258 and 267-B, with pentachlorophenol being found. The flight line was relatively free of toxic organics except for a sample found to have significant concentrations of methylene chloride and dichloroethylene from manhole 470. Contributions of organics after the confluence of the flight line and Phoenix Street sewers on First Street did not appear to be significant.

AMARC area (AFOEHL sites 50-59) had consistently low toxic organics and high phenolic concentrations. Pentachlorophenol was consistently found.

# B. AFOEHL Wastewater Characterization

## 1. Basis for Characterization

A characterization of Davis-Monthan AFB wastewater can be facilitated by comparing the characteristics to results from previous surveys at Davis-Monthan AFB and with similar surveys at other bases. The AFOEHL has performed more than twenty such characterizations in the past four years.

## 2. Flow Measurement

Flow rates are calculated using data collected with flumes and ISCO Automatic Flowmeters. Flume choice is predicated by the size of the sewer line. Survey flumes include; 6" Manning, 8" Manning, 12" Plastifab, and 15" Plastifab Palmer Bowlus flumes (PBF). PBFs are governed by the equation:

$$Q = kH \exp 1.9$$

The flow Q is in cubic feet per second (cfs). The head H is the height of water in the flume throat (narrow part) in feet. The scaling factor k is the maximum flow rate at the maximum flume fluid height and is dimensionless. The respective design flow equations along with the maximum heads are:

Palmer Bowlus Flow Equations

| PBF | Equation             | H max (ft) |
|-----|----------------------|------------|
| 6"  | Q = 2.18  H exp  1.9 | 0.392      |
| 8"  | Q = 2.60  H exp  1.9 | 0.525      |
| 12" | Q = 3.31  H exp  1.9 | 0.730      |
| 15" | Q = 3.79  H exp  1.9 | 0.910      |

The ISCO Flow Meter (Model 2870) measures the pressure head in a flume and integrates over time to determine flow. The meter also tabulates total volume. Average flow rates are calculated by dividing the total volume by the time interval, and converting the results into the appropriate flow rate units (cfs or gpd). The scaling constant is dialed onto a computer module which is attached to the flow meter. The scaling constants for the 6, 8, 12, and 15 inch flumes are 0.367, 0.764, 1.83, and 3.17 cfs, respectively. Figure 1 shows the meter set up at Site 16.

The flow through manholes 119, and 298 represent the total flow going off the base. Wastewater from AMARC, Frank-Borman Housing, and the Commissary flow through MH 298. Wastewater from the flightline, Hospital, Lowell-Smith Housing, Base Exchange (BX), BX Service Station, Burger King, as well as the intermediate area between 1st and 5th Streets flows through MH 119. Water meters (WM) were placed at the hose bibs of the aircraft washrack adjacent to MH 468. Flow monitoring sites are presented in Table 2.



Figure 1. Flow Meter Set Up At Site 16

Table 2. Flow Monitoring Sites

| MH             | LOCATION                                        |
|----------------|-------------------------------------------------|
| 17             | Base Exchange (7th & Granite Sts.)              |
| 68             | 3rd & Durango Sts.                              |
| 82             | BX Service Station (Commanchee St.)             |
| 102            | 1st & Jeddito Sts.                              |
| <b>11</b> 5    | 1st & Bola Sts.                                 |
| 119            | Sunglow Road                                    |
| 215            | Commissary (7th & Arizola Sts.)                 |
| 261            | Transportation (Phoenix & Flagstaff Sts.)       |
| 276            | 41st Line (Phoenix St.)                         |
| 298            | Sunglow Road (Near Swan Gate)                   |
| 315 <b>-</b> 0 | Frank Borman Housing Softball Field             |
| 313            | Frank Borman Housing open field (Quijota Blvd.) |
| 342            | AMARC                                           |
| 376            | Hospital (Alamo Ave. & Oro St.)                 |
| 411-A          | Lowell Smith Housing (Ironwood St.)             |
| 458            | Flight line (Phoenix & Douglas Sts.)            |
| WM             | Aircraft Washrack (Phoenix & Douglas Sts.       |

# 3. Wastewater Characterization Sampling

Wastewater sample site locations are presented in Table 3. These were selected to include regulated monitoring points, significant industrial and commercial discharge points, and operations possibly requiring pretreatment. Samples were taken continuously for at least 24 hours, some locations for multiple days, except at oil/water separator where a grab sample was twoically taken. Samples were taken with either ISCO or SIGMA wastewater sampling equipment. Samples were collected in 3-gallon glass containers, surrounded by ice in the wastewater sampler. The samples were transported to AFOEHL on-site laboratory set up in building 4819 and segregated by analysis method. A photograph of the on-site laboratory is included as Figure 2. Some analyses were performed on-site, others sent to AFOEHL, Brooks AFB, Texas. Analytical and preservation methods and analyzing laboratory locations are presented in Table 4.

Table 3. Sample Site Locations

| Site Number | Main Base Sewers                               |
|-------------|------------------------------------------------|
| 1           | MH 123 Near Swan Gate                          |
| 2           | MH 100 Arizola St.                             |
| 3           | MH 215 Commissary, bldg 2615                   |
| 4           | MH 77 Burger King, bldg 2521                   |
| 5           | MH 17 BX, bldg 2441                            |
| 6           | Laundromat, bldg 5000                          |
| 7           | MH 119 N. of North Ramp                        |
| 8           | MH 270C, Auto Hobby Shop, bldg 4531            |
| 9           | MH 23, NCO Club, bldg 4455                     |
| 10          | Dining Hall, bldg 4100                         |
| 11          | o/w sep., GLCM AGE, Cor. Control, bldg 72      |
| 12          | o/w sep., GLCM, bldg 73                        |
| 13          | o/w sep., GLCM, bldg 74                        |
| 14          | o/w sep., CAMS, Propulsion Washrack, bldg 1360 |
| 15          | o/w sep., Entomology, bldg 5319                |

| Site Number | Industrial Area Sewers                                                   |
|-------------|--------------------------------------------------------------------------|
| 16          | MH 115 First St.                                                         |
| 17          | MH 258 Phoenix St.                                                       |
| 18          | MH 274A S.E. Phoenix St.                                                 |
| 19          | 23 CAMS Corrosion Control, bldg 5255                                     |
| 20          | o/w sep., 41 ECS Engine Shop, bldg 133                                   |
| 21          | o/w sep., Fire Station, bldg 4821                                        |
| 22          | o/w sep., Bulk Storage, bldg 115                                         |
| 23          | o/w sep., 41 ECS AGE shop, bldg. 125                                     |
| 24          | o/w sep., Trans, Fire Truck Maint., bldg 4823                            |
| 25          | o/w sep., 355 AGS AMU, bldg 4809                                         |
| 26          | o/w sep., 355 EMS AGE, bldg 4712                                         |
| 27          | o/w sep., 836 TRANS Refueling Maint., bldg 4812                          |
| 28          | o/w sep., 836 TRANS Refueling Maint., bldg 4815                          |
| 29          | o/w sep., 355 EMS AGE, bldg 4712                                         |
| 30          | o/w sep., 23 CAMS AC Maint., bldg 1711                                   |
| 31          | o/w sep., 23 CAMS Fuel Systems Shop, bldg 5256                           |
| 32          | o/w sep., 23 CAMS Corrosion Control, bldg 5255                           |
| 33          | o/w sep., 255 AGS AMU, bldg 5251                                         |
| 34          | o/w sep., 355 AGS Propulsion Branch, bldg 5245                           |
| 35          | o/w sep., AMU, bldg 5430                                                 |
| 36          | o/w sep., 836 Trans. Vehicle Ops., bldg 4701                             |
| 37          | o/w sep., Transportation, bldg 4705                                      |
| 38          | o/w sep., 355 EMS Inspection, bldg 5607                                  |
| 39          | o/w sep., 255 EMS Armament, bldg 4710                                    |
| 40          | MH 468, Aircraft Washrack                                                |
| Site Number | Housing, Hospital, and Test Stand Sewers                                 |
| 41          | MH 298 Near Swan Gate                                                    |
| 42          | MH 376 Hospital, Alamo Ave                                               |
| 43          | MH 502 Quijota Blvd                                                      |
| 44          | MH315A Housing Branch near mair gate                                     |
| 45          | MH 13 Housing, Davenport                                                 |
| 46          | o/w sep., Test stand, bldg 224                                           |
| 47          | o/w sep., Test stand, bldg 225                                           |
| 48          | o/w sep., Test stand, bldg 225 (NTR)                                     |
| 49          | o/w sep., Test stand, STRP                                               |
| Site Number | AMARC                                                                    |
| <b>5</b> 0  | MIL ONO AMARO Attracect Character Amar                                   |
| 50<br>51    | MH 342 AMARC Aircraft Storage Area                                       |
| 51<br>52    | AMARC Washrack                                                           |
| 52<br>53    | MH 364, AMARC, Small Parts Cleaning                                      |
| 54          | o/w sep., AMARC Out Processing, bldg 7408 o/w sep., AMARC NDI, bldg 7401 |
| 55<br>55    | o/w sep., AMARC, bldg 7340                                               |
| 56          | o/w sep., AMARC, Washrack, bldg 7425                                     |
| 57          | o/w sep., AMARC, Washrack, bldg 7222                                     |
| 58          | o/w sep., AMARC, In Processing, bldg 7448A                               |
| 59          | o/w sep., AMARC, In Processing, bldg 7448B                               |
|             | other, manie, in the construction of the                                 |
|             |                                                                          |

Added Main Base Officer's Club, bldg 2050



Figure 2. On-site Laboratory, Building 4816

# 4. Industrial Wastewater Laboratory Study

Subsequent to the July 1989 survey, the base had received a Notice of Violation for discharging cadmium above the pretreatment limit of 100  $\mu$ g/L. A sample of wastewater from AMARC, building 7401 NDI oil/water separator was sent to AFOEHL/EQ in October 89 and bench scale jar testing was performed to assess the effect of chemical addition in removing heavy metals.

Aluminum sulfate (alum) was added to 1.5 liter aliquots of wastewater in bell jars at a Phipps Bird apparatus. The chemical was rapidly mixed at 40 rpm for two minutes, then slowly mixed at 15 rpm for 10 minutes. Sufficient alum was added to obtain 25, 50, 100, and 150 mg/L. The samples were allowed to settle for one hour and supernatant withdrawn from the top and submitted to AFOEHL/SA for ICP metals analyses. The experiment was repeated with no alum addition but with an addition of sodium hydroxide (40 mL) to raise the pH to 12.0.

Table 4. Wastewater Characterization Analytical Methods

|                            | m Detected           | Mathe     | Whone      | Who      |
|----------------------------|----------------------|-----------|------------|----------|
| Analysis                   | Conc.                | Methd     | Where      | WIIO     |
| 631.c.3 4 m2 fro           | 10 mg/L              | A403      | on-site    | AFOEHL   |
| Alkalinity                 | 0-14 units           | A423      | on-site    | AFOEHL   |
| pH                         | - unitos             | E170.1    | on-site    | AFOEHL   |
| Temperature                | 10 ug/I              | A408E     | on-site    | AFOEHL   |
| Chlorine Residual          | 10 μg/L              | A421 F    | on-site    | AFOEHL   |
| Dissolved Solids           | 1 mg/L               | E405.1    | on-site    | AFOEHL   |
| BOD5                       | 10 /1                | Hach Mod. | on-site    | AFOEHL   |
| COD                        | 10 mg/L              | A209A     | on-site    | AFOEHL   |
| Total Suspended Solids     | 1 mg/L               |           | on-site    | AFOEHL   |
| Total Dissolved Solids     | 1 mg/L               | A209B     | Brooks AFB | AFOEHL   |
| Oil and Grease             | 0.3 mg/L             | E413      | Brooks AFB | AFOEHL   |
| Ext. Petr. Hydrocarbons    | 1.0 mg/L             | E418      |            | AFOEHL   |
| Ammonia                    | 0.2 mg/L             | E350      | Brooks AFB | AFOEHL   |
| Nitrate                    | 0.05  mg/L           | £353      | Brooks AFB |          |
| Nitrite                    | 0.02  mg/L           | E353      | Brooks AFB | AFOEHL   |
| Total Kjeldahl Nitrogen    | 0.2  mg/L            | E305      | Brooks AFB | AFOEHL   |
| Total Phosphorous          | 0.05  mg/L           | E365      | Brooks AFB | AFOEHL   |
| Phenols                    | 5 μg/L               | E604/E420 | Brooks AFB | AFOEHL   |
| Arsenic                    | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Barium                     | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Cadmium                    | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Chromium                   | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Chromium, hexavalent       | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Copper                     | 100 µg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Iron                       | 100 µg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Lead                       | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
|                            | 100 µg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Manganese                  | 2 μg/L               | E200.7    | Brooks AFB | AFOEHL   |
| Mercury                    | 100 µg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Nickel                     | 100 µg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Selenium                   | 100 µg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Silver                     | 100 μg/L<br>100 μg/L | E200.7    | Brooks AFB | AFOEHL   |
| Zinc                       | -                    | E200.7    | Brooks AFB | AFOEHL   |
| Calcium                    | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Magnesium                  | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Potassium                  | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Sodium                     | 100 μg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Aluminum                   | 100 μg/L             |           | Brooks AFB | AFOEHL   |
| Beryllium                  | 100 µg/L             | E200.7    | Brooks AFB | AFOEHL   |
| Chloride                   | 2 mg/L               | E325      |            | AFOEHL   |
| MBAS                       | 0.1 mg/L             | E425.1    | Brooks AFB | AFOEHL   |
| Boron                      | 0.2 mg/L             | A404A     | Brooks AFB | AFOEHL   |
| Cyanide                    | 5 µg/L               | A412D     | Brooks AFB |          |
| Sulfides                   | 1 mg/L               | E376      | Brooks AFB | AFOEHL   |
| Volatile Organic Compounds | 3 *                  | E624      | Brooks AFB | AFOEHL   |
| Base, Neutral, Extract.    | *                    | E625      | DataChem   | Salt Lak |
| •                          |                      |           |            | С        |

A indicates Standard Methods for the Examination of Water and Wastewater, 1985 (5)

E indicates EPA Methods for Chemical Analysis of Water and Wastes (6)

<sup>\*</sup> for VOC results, see Appendix I

# C. Hazardous Waste Survey

#### 1. Procedure

The first step of the survey was to review the base hazardous waste management plan and the Bioenvironmental Engineer's industrial shop folders to determine which shops generate chemical wastes. This was followed by visits to shops to observe industrial operations, discuss chemical waste disposal practices with shop personnel, and hand out chemical disposal survey forms (see Appendix A). These forms, which were completed by shop personnel, were reviewed by the survey team and provided additional information for subsequent discussions with shop personnel. The following individuals were contacted to discuss their responsibility and involvement in the hazardous waste program:

1Lt Legendre, Chief, Bioenvironmental Engineering, SGPB, AV 361-5369 Mr Thompson, Chief, Environmental Quality Branch, 836 CSG/DEQ, AV 361-5372 Mr Hague, Environmental Specialist, AMARC/MAQ, AV 361-5079 Mr Ellison, Environmental Specialist, 836 CSG/DEQ, AV 361-5897

Based on the data from the completed chemical disposal survey forms, the annual forecasted quantities for nine categories of waste were determined and are summarized in Table 5. From Table 5, Column 3, 37.3% of the total waste generated consists of waste oil and fluid; however, these wastes are not considered hazardous waste. Eighteen percent of the total amount of waste generated is drummed and disposed of as hazardous waste through the Defense Reutilization and Marketing Office (DRMO). Itemized listings of wastes (including categories, shop, amount of waste, and disposal method) are found in Appendix B. Appendix C lists wastes disposed of as hazardous waste. Appendix D lists wastes discharged to the sanitary sewer.

### 2. Hazardous Waste Program

The hazardous waste program at Davis-Monthan AFB is working well. The Environmental Quality Branch in Civil Engineering, 836 CSG/DEQ, is responsible for the management of the entire program. The DRMO is responsible for contractual removal of wastes. The Bioenvironmental Engineering (BEE) Shop helps to monitor the program through industrial shop surveys and is responsible for waste sampling.

Individual shops are responsible for identifying, segregating, handling, packaging, and labeling the wastes generated by the shop. Wastes are usually placed in a 55-gallon drum located at a designated accumulation site or placed in a 55-gallon drum and taken directly to DRMO.

When wastes need to be disposed, the shop hazardous waste manager partially completes an AF Form 2005 and submits it to DEQ (Mr Ellison), who completes the form and checks it for accuracy. The manager then takes the form to Supply who generates a DD Form 1348-1 using the information contained on the AF Form 2005. The DD Form 1348-1 is then submitted to DEQ for signature (indicating that funds are available for disposal of the waste). Finally, the generator submits the DD Form 1348-1 to DRMO who arranges for a waste disposal contractor to pickup the wastes.

Table 5. Annual Forecasted Quantities of Waste Generated at Davis-Monthan AFB

| PRODUCT<br>(GAL/YR)          | TOTAL       | % TOTAL | DISPOSED OF<br>AS HAZ WASTE | % TOTAL<br>HAZ WASTE |
|------------------------------|-------------|---------|-----------------------------|----------------------|
| Oil & Fluid                  | 22,531      | 37.3    | 360                         | 3.4                  |
| Safety Kleen                 | 1,140       | 1.9     |                             |                      |
| Paints, Thinners & Strippers | s<br>10,386 | 17.2    | 9,026                       | 84.8                 |
| Fuel                         | 2,351       | 3.9     |                             |                      |
| Antifreeze                   | 180         | 0.3     |                             |                      |
| Soap                         | 5,856       | 9.7     |                             |                      |
| Photo & NDI                  | 1,813       | 3.0     | 180                         | 1.7                  |
| Solvents                     | 4,322       | 7.1     | 1,077                       | 10.1                 |
| Misc Chemicals               | 11,878      | 19.7    |                             |                      |
| Total:                       | 60,457      | 100.0   | 10,643                      | 100.0                |

Any unknown wastes are analyzed before disposal. The BEE shop has the responsibility for sampling unknown wastes and other waste streams on an as needed basis. Samples are sent to the AFOEHL/SA for analysis and results are sent back to the BEE who notifies DEQ of the results.

3. Description of Industrial Activities. Thirty-nine industrial shops (Master Listing Contained in Appendix E) were surveyed and their chemical waste handling practices were documented. The findings for each industrial shop follow (see Appendix B for a shop-by-shop listing of waste disposal practices).

#### a. 23 Consolidated Aircraft Maintenance Squadron (23 CAMS)

Shop: Engine Bldg: 1358

Contact: MSgt Steel AUTOVON: 361-4534

Engine Shop personnel maintain J-85-17A jet engines. The shop repairs approximately two engines per month. Approximately eight quarts of synthetic oil are drained from each engine. Waste synthetic oil (48 gallons/year) is stored in a 55-gallon drum and disposed as petroleum oil and lubricants (POL) through DRMO. Rinsolve 140 is used for degreasing engine parts. Dirty rags are disposed as municipal waste. A washrack for parts cleaning is provided at building 1360.

Shop: Phase Dock

Contact: TSgt Johnson

Bldg: 1447

AUTOVON: 361-5120

Phase Dock personnel perform minor maintenance and schedule regular inspections on OV-10 and A-10 aircraft. Waste hydraulic fluid (18-21 gallons/ month) and synthetic oil (13-20 gallons/month) are stored in 55-gallon drums. When full, the drums are taken to the accumulation site near Bldg 1541. AMU personnel in Bldg 1541 are responsible for the management of the accumulation site. Large fuel spills are cleaned up by AGE Roadrunner Operations. Small oil spills are cleaned up with Speedy Dry or rags. VAL 800 spray lubricant is used for lubricating aircraft parts. Spent Speedy Dry, used rags, and VAL 800 aerosol cans are disposed as municipal waste.

Shop: Aircraft Maintenance

Contact: 2Lt Banks

Bldg: 1541

AUTOVON: 361-2194

Aircraft Maintenance personnel oversee the operation of the CAMS maintenance function. The shop is responsible for maintaining the accumulation site located next to building 1541. At the time of the survey, the accumulation site and storage drums were maintained in accordance with 40 CFR 261. Personnel transport waste drums (approximately 2 drums/month) as necessary to the DRMO waste storage facility.

Shop: Corrosion Control

Contact: MSgt Koernig

Bldg: 5255

AUTOVON: 361-5275

Shop personnel treat and refinish A-10 and OV-10 aircraft and support equipment. Approximately four aircraft are sanded and repainted each week. All waste paints and thinners (590 gallons/month) are mixed together, put into 55-gallon drums, and disposed through DRMO as hazardous waste. Small parts are stripped inside the shop in two heated paint stripping tanks (220-gallon capacity each). Waste paint stripper (10 gallons per month) is drummed and disposed through DRMO as hazardous waste. The paint stripping tanks are cleaned out every 6-8 months; the waste is drummed and disposed as hazardous waste through DRMO.

Shop personnel also maintain the aircraft washrack. Four aircraft per day are washed. The aircraft soap is applied at a 4:1 to 8:1 dilution ratio. Rinse water from the washrack discharges to an oil/water separator connected to the sanitary sewer system.

Shop: Fuel Systems

Contact: MSgt Barnett

Bldg: 5256

AUTOVON: 361-3134

Shop personnel remove, repair, and replace aircraft fuel system components such as fuel bladders and external tanks. JP-4 drained from fuel tanks (approximately 100 gallons per month) is stored in a bowser for use by the Aerospace Ground Equipment (AGE) Shop. The shop floor drains were dry, and an inspection of the oil/water separator indicated very low flow.

# b. 355 Equipment Maintenance Squadron (355 EMS)

Shop: NDI

Contact: TSgt Johnson AUTOVON: 361-4477

Bldg: 5406

Shop personnel perform nondestructive inspection processes including magnetic particle, dye penetrant, and x-ray inspection processes. Magnaflux magnetic particle solution (10 gallons/3 months) containing iron fillings is drummed and disposed through DRMO. About 100 gallons per year of 1,1,1-tri-chloroethane (TCA) are drummed and disposed as hazardous waste through DRMO. Dye penetrant (55 gallons/6-8 months) is drummed and disposed of as hazardous waste through DRMO. Spent emulsifier (55 gallons/6-8 months) and developer (55 gallons/6-8 months) are discharged down the drain to the sanitary sewer.

The shop also has a x-ray developing room. Waste fixer  $(0.5-50 \, \text{gallons/day})$  is processed through a silver recovery unit before being discharged to the sanitary sewer. The silver recovery cartridge is disposed through DRMO. The developer  $(0.25-50 \, \text{gallons/day})$  is discharged down the drain to the sanitary sewer. The shop has a contract with a local linen service for cleaning rags.

Shop: AGE Bldg: 4712

Contact: SMSgt Morris AUTOVON: 361-5352

AGE personnel service, maintain, and dispatch flight line support equipment. Waste 83282 hydraulic fluid (55 gallons/month) and synthetic oil (55 gallons/month) are stored in 55-gallon drums and disposed as POL through DRMO. Waste JP-4 (83 gallons/quarter) drained from the equipment during servicing operations is drummed and either used at the Fire Training Pit (FTP) or disposed as POL through DRMO. AGE equipment is washed by steam cleaning (without any soap) on the washrack. The water is rinsed down the drain to an oil/water separator connected to the sanitary sewer. Small oil spills are cleaned up with Speedy Dry or rags. Speedy Dry is disposed as municipal waste; used rags are cleaned by a local linen contractor, Industrial Uniform Services. Spray paint is used for touch-up painting. Empty aerosol cans are disposed as municipal waste. Small parts are cleaned in a solvent spray tank containing Rinsolve 140. The tank is changed out every six months; the waste (110 gallons/year) is drummed and disposed as POL through DRMO.

Shop: Armament Bldg: 4710

Contact: MSgt Tilden AUTOVON: 361-4432

Armament personnel perform maintenance on A-10 and OV-10 aircraft gun systems and missile launchers. Spray paint is used for stenciling labels on weapons. The empty aerosol cans are disposed as municipal waste. LA 175 soap (55 gallons/quarter) used for cleaning equipment is discharged down the drain to an oil/water separator connected to the sanitary sewer. Dirty rags and coveralls are sent to Industrial Uniform Services for cleaning.

Shop: Wheel and Tire

Contact: SrA Nalley

Bldg: 4809

AUTOVON: 361-3978

Wheel and Tire personnel assemble, disassemble, and clean wheels and tires for A-10 and OV-10 aircraft. The shop has two Rinsolve 140 tanks (120-gallon and 30-gallon capacity) for cleaning bearings and wheels. The tanks are cleaned out every six months. The waste Rinsolve 140 (300 gallons/year) is drummed and disposed as POL through DRMO. TCA is used for cleaning small parts; none is disposed. Dirty rags are sent to Industrial Uniform Services for cleaning.

# c. 836 Transportation Squadron (836 TRANS)

Shop: General & Special Purpose Maint

Contact: Mr Moffitt

Bldg: 4507

AUTOVON: 361-5394

General and Special Purpose Maintenance personnel perform regularly scheduled and unscheduled maintenance on all base vehicles and heavy equipment. Waste transmission fluid (25 gallons/quarter) and motor oil (600 gallons/month) are drummed, stored at the accumulation site located behind Bldg 4507, and disposed as POL through DRMO. The shop has two 25-gallon Rinsolve 140 tanks that are changed out every 60 days. The waste is drummed, stored at the accumulation site, and disposed as POL through DRMO. Lead-acid batteries are rinsed with water and poured down the drain to a limestone neutralization tank which is connected to the sanitary sewer. The limestone sludge is allowed to dry before disposal as hazardous waste through DRMO. Dirty cleaning rags (approximately 40 bundles/month) are disposed as municipal waste. Oil spills are washed down the drain to an oil/water separator connected to the sanitary sewer. Vehicles are washed with Steam-It soap; the water and soap are discharged down the drain to an oil/water separator connected to the sanitary sewer.

Shop: Allied Trades Contact: Mr Moffitt

Bldg: 4705

AUTOVON: 361-4987

Shop personnel perform painting and bodywork on all base vehicles. The shop mixes only the amount of paint required to accomplish the work. Small amounts of thinner are used for cleaning painting equipment. The shop has a dry paint booth. The filters are changed out once per week and disposed as municipal waste.

Shop: Refueling Maintenance

Bldg: 4812

Contact: Mr Knight

AUTOVON: 361-3288

Shop personnel maintain and repair aircraft refueling vehicles. JP-4 is analyzed by POL personnel. If possible, the fuel is blended back into the base fuel supply. If the fuel is contaminated, it is disposed of as POL through DRMO. Transmission oil and motor oil (1800 gallons/year) are drummed and disposed of as POL through DRMO. CALLA 800 soap and Rinsolve 140 are used for cleaning the vehicles. The waste is discharged to the sanitary sewer through an oil/water separator. Cleaning rags are disposed of as municipal waste.

Shop: Fire Truck Maintenance

Contact: Mr Scheets

Bldg: 4823 AUTOVON: 361-5001

Shop personnel maintain the Davis-Monthan AFB firefighting fleet. Waste oil (55 gallons/month) and antifreeze (5 gallons/month) are drummed and taken to the 836 TRANS accumulation site located at Bldg 4507. Dirty rags are disposed as municipal waste. Spray paint is used for touch-up painting on the equipment. Empty aerosol cans are disposed as municipal waste.

d. 836 Civil Engineering Squadron (836 CES)

Shop: Refrigeration

Contact: TSgt Moore

Bldg: 5309

AUTOVON: 361-4694

Shop personnel maintain air conditioning and refrigeration equipment throughout the base. The cooling tower discharge is released into the air or discharged down the drain to the sanitary sewer. The chemical additives contained in the cooling discharge are inhibitor (NSN 6850 0059 2537 and 6850 0059 2937) and Cooling Tower Treatment CT 320.

Shop: Power Production Contact: MSgt Terry

Bldg: 5122

AUTOVON: 361-4520

Power Production personnel perform preventive maintenance on diesel generators. Waste hydraulic fluid, diesel, and motor oil (350 gallons/year, total) are drummed, stored at the accumulation site located on the south side of Bldg 5122, and disposed as POL through DRMO. Spray paint is used for touch-up painting. Empty aerosol cans are disposed as municipal waste. Paint thinner is used in process. Dirty rags are disposed as municipal waste.

Shop: Entomology

Contact: TSgt Figueredo

Bldg: 5319

AUTOVON: 361-5368

The Entomology Shop is responsible for pest control throughout the base. This shop does not generate any waste chemicals. All chemicals are used in process. Nutrasol is used to deactivate and clean tanks of chemical residues. When empty tanks and sprayers are cleaned, a small amount of rinse water is discharged to the sanitary sewer system.

Shop: Liquid Fuels

Bldg: 5309

Contact: Mr Rogalski AUTOVON: 361-4983

Liquid Fuels personnel maintain stationary fuel systems and clean aboveground and underground storage tanks. Five aboveground tanks at the bulk storage area are cleaned every five years on a rotating basis. There are an additional 45 underground storage tanks which are inspected annually and physically entered every three years. The main source of waste is the JP-4 fuel/sludge mixture generated during tank cleaning operations. Each cleaning operation generates about 275-300 gallons of sludge which is drummed and disposed as POL through DRMO.

Shop: Heating Plant Contact: Mr Estrada

Bldg: 5309 AUTOVON: 361-3139

Shop personnel service, maintain and repair high—and low-pressure steam boilers and hot water boilers. Inorganic phosphate, sodium bisulfite, and cyclohexylamine are used to control scaling and corrosion. Approximately 200 gallons per week of these chemicals are used for the blowdown of boiler water tanks. An acid vat, located near Building 5309, is used for descaling heating coils. About 115 gallons of sulfamic acid is used per month in the vat. The acid is diluted and discharged to a marble chip neutralization tank before being discharged to the sanitary sewer system.

e. 868 Tactical Missile Maintenance Squadron (TMMS)

Shop: AGE

Bldg: 72

Contact: TSgt Walker

AUTOVON: 361-3201

Shop personnel perform all maintenance and periodic inspections on AGE assigned to 868 TMMS. Waste diesel fuel (20 gallons/month), 7808 oil (20 gallons/month), lube oil (220 gallons/year), and other waste oils and fluids are segregated in 55-gallon drums and disposed as POL through DRMO. Dirty rags and Speedy Dry are put into plastic bags and disposed as municipal waste. Batteries (6/year) are taken to the TRANS Battery Shop for electrolyte neutralization and disposal.

Shop: Corrosion Control

Bldg: 72

Contact: TSgt Korzenaski

AUTOVON: 361-5199

Shop personnel perform corrosion treatment and paint associated parts and support equipment assigned to 868 TMMS. Waste polyurethane paint, thinner, and MEK (5 gallons/2 months) are stored in a 5-gallon can and disposed as hazardous waste through DRMO. Empty aerosol spray cans and paint brushes are disposed as municipal waste. Waste oil and fluid (110 gallons/3 months) are drammed and disposed of as POL through DRMO.

Shop: Vehicle Maintenance

Bldg: 72

Contact: TSgt Brown

AUTOVON: 361-4994

Snop personnel perform routine maintenance on all vehicles and heavy equipment assigned to 868 TMMS. Waste engine oil (350 gallons/2 months) is stored in a 550-gallon underground waste storage tank and pumped out every two months by a contractor. Dextron II transmission fluid (125 gallons/year) is stored in 55-gallon drums and disposed through DMRO. The shop has one 30-gallon Safety Kleen degreasing tank that is serviced every two months by the contractor. Biogenic 5E 377C Soap (110 gallons/year, diluted 20:1) used for steam cleaning parts and equipment is discharged down the drain to an oil/water separator connected to the sanitary sewer.

# f. 41 Electronic Combat Squadron (ECS)

Shop: Fuel System Repair Contact: SrA Winter Bldg: 136

AUTOVON: 361-4640

Shop personnel clean and repair fuel systems for the EC 130H aircraft. Waste JP-4 (3 gallons/month) is taken to the 41 ECS accumulation point (Bldg 125) and poured into a 550-gallon waste fuel bowser. The bowser is pumped out periodically by a contractor. Petroleum lubricants (2 gallons/year) are used for sealing 0-rings. MEK is used in process for cleaning metal surfaces and removing fuel tank sealant from parts and equipment. Dirty rags and Speedy Dry are disposed as municipal waste. General purpose soaps are used for cleaning parts and equipment. Batteries from flashlights and electronic equipment are disposed as municipal waste.

Shop: Hydraulic Contact: Sgt Mundy

Bldg: 136

AUTOVON: 361-5847

Shop personnel inspect, service, repair, overhaul, and bench check hydraulic and pneumatic components. Waste hydraulic fluid (2 gallons/month) is accumulated in 55-gallon drums, taken to the 41 ECS accumulation point, and disposed through DRMO. The shop has a 160-gallon Rinsolve 140 tank that is changed out every six months. The waste is drummed, taken to the 41 ECS accumulation site, and disposed as POL through DRMO. Dirty rags are disposed as municipal waste. There are no floor drains in the shop.

Shop: Isochronal Contact: SSgt Linkous Bldg: 136

AUTOVON: 361-5845

Shop personnel perform periodic inspections and repairs on C-130 aircraft. There are no wastes generated in the shop.

Shop: Electric

Bldg: 129

Contact: TSgt Van Vranken

AUTOVON: 361-5878

Shop personnel inspect and maintain electrical systems on the C-130 aircraft. Liquid oxygen (200 gallons/month) is used in process. Dibromomethane fire agent (5 gallons/month) is put in the aircraft. MEK (1 gallon/month) is used in process to clean  $\rm CO_2$  bottles. Turbine engine oil (2 gallons/year) and other waste oil are put into the waste oil bowser located at the 41 ECS accumulation site. Speedy Dry is disposed as municipal waste. Dirty cleaning rags are either washed and reused or disposed as municipal waste.

Shop: Propulsion

Bldg: 133

Contact: TSgt Tiensvold

AUTOVON: 361-5741

Shop personnel build-up and repair jet engines for C-130 aircraft. 23699 engine oil (110 gallons/month) and hydraulic fluid (55 gallons/2 months) are drummed, taken to the 41 ECS accumulation point and disposed as POL through RMO. Toluene and MEK are used in process for wiping down parts. PD-680 (23 gallons/2 months) is drummed, taken to 41 ECS accumulation point, and disposed through DRMO as hazardous waste. Bio-Franklin soap (2 cups/3 gallons water) is used for cleaning the floor. The shop floor drains have been covered. Dirty rags are disposed as municipal waste.

Shop: Corrosion Control Contact: MSgt Thunstrum

Bldg: 136 AUTOVON: 361-4151

Shop personnel perform corrosion treatment, paint aircraft, do touch-up painting on the flight line, associated aircraft parts and support equipment, and wash aircraft. Polyurethane and enamel paint (6-8 gallons/month) and thinners (5 gallons/month) are stored in 5-gallon cans, taken to the 41 ECS accumulation site, and disposed as hazardous waste through DRMO. Filters (36/month) used in the dry paint booth are put in a cardboard box and disposed as municipal waste. Soap (440 gallons/month) is discharged down the drain to an oil/water separator connected to the sanitary sewer. Dirty rags are disposed as municipal waste.

Shop: AGE Bldg: 125

Contact: SSgt Holyfield AUTOVON: 361-3988

Shop personnel service, maintain, and dispatch flight line support equipment. Hydraulic fluid (55 gallons/month), synthetic engine oil (55 gallons/month), and motor oil (55 gallons/month) are drummed, taken to the 41 ECS accumulation site, and disposed as POL through DRMO. Rinsolve 140 is drummed, taken to the 41 ECS accumulation site, and disposed as POL through DRMO. PD-680 (4 gallons/month) is drummed and disposed as hazardous waste through DRMO. Dirty rags are disposed as municipal waste. Speedy Dry is put into a plastic bag and disposed as municipal waste. Aircraft soap (55 gallons/month, diluted 20:1) is discharged down the drain to an oil/water separator connected to the sanitary sewer. The oil/water separator is pumped out by a contractor every four months. Batteries (2-3/month) are taken to the TRANS Battery Shop for electrolyte neutralization and disposal.

Shop: Aircraft Maintenance Bldg: 139
Contact: MSgt Bagwell AUTOVON: 361-5995

Shop personnel maintain and issue tools and equipment required to perform flight line maintenance on C-130 aircraft. PD-680 (5 gallons/2 months) is stored in a 5-gallon can, taken to the 41 ECS accumulation site, and disposed as hazardous waste through DRMO. Waste hydraulic fluid (1 gallon/ month), engine oil (15 gallons/month), and turbine oil (2 gallons/month) are taken to the 41 ECS accumulation point and disposed as POL through DRMO. Dirty rags and Speedy Dry are disposed as municipal waste.

g. Aerospace Maintenance and Regeneration Center (AMARC)

Shop: Washrack Bldg: 7425 Contact: Mr Wilson AUTOVON: 361-3263

Corrosion/paint personnel are responsible for light painting and corrosion prevention on AMARC aircraft. The shop generates one 55-gallon drum/year containing 50% paint stripper, 40% paint residue, and 10% plastic and rags. The waste is disposed as hazardous waste through DRMO.

Shop: Materials Lab

Contact: Mr Stutz

Bldg: 7615 AUTOVON: 361-3387

Shop personnel analyze hydraulic and engine oil for particulates and sediment. 1,1,1-Trichloroethane (TCA) is used in hydraulic fluid analysis. Waste hydraulic fluid containing TCA (30 gallons/month) and engine oil (30 gallons/month) are drummed separately and disposed through DRMO. The hydraulic fluid is disposed as hazardous waste through DRMO, and the engine oil is disposed as POL through DRMO. Freon (5 gallons/month) used for washing equipment is stored in a 5-gallon can and disposed as hazardous waste through DRMO. Nitric acid (1 gallon/month) and hydrochloric acid (1 gallon/month) are used in process.

> Shop: Pneudraulics Contact: Mr Berry

Bldg: 7415

AUTOVON: 361-5636

Pneudraulics shop personnel maintain aircraft pneudraulic components. Waste hydraulic fluid (440 gallons/year) is drummed and disposed as POL through DRMO. Rinsolve 140 (165 gallons/year) is drummed and disposed as POL through DRMO. Dirty rags are disposed as municipal waste.

Shop: NDI

Contact: Mr Machado

Bldg: 7401

AUTOVON: 361-3670

Shop personnel perform nondestructive inspections on AMARC aircraft structural components using dye penetrant, magnetic particle and x-ray inspection methods. The x-ray process is a real-time x-ray process. No developer or fixer is used.

Dye penetrant inspection is an open system which uses penetrant, emulsifier, and developer. Parts are sequentially dipped into the penetrant and the emulsifier, then rinsed and allowed to dry. Next, the part is dipped into the developer, passed through a drying oven, inspected, and rinsed. Spent penetrant (55 gallons/7 years), developer (55 gallons/7 years), and emulsifier (55 gallons/7 years) are drummed and disposed as hazardous waste through DRMO. Magnetic particle solution (30 gallons/year) is drummed and disposed through DRMO.

Shop: Small Parts Cleaning

Contact: Mr Gunderson

Bldg: 7401

AUTOVON: 361-5402

Shop personnel clean small parts from AMARC aircraft. The shop has a 700-gallon hot paint remover tank (Mil R-83936B) and a 700-gallon carbon remover tank that are changed out every 5 years. The wastes are drummed and disposed as hazardous waste through DRMO. The shop also has a 400-gallon alkaline rust remover tank (NaOH) and a 200-gallon TCA vapor degreasing tank that are never changed out.

Glass and plastic beads used for blasting paint from aircraft parts are disposed as municipal waste. The wastes have been analyzed for hazardous waste characteristics and determined to be nonhazardous.

Rinsolve 140 is used in a tank in the solvent room for degreasing parts. When dirty, the Rinsolve 140 is added to soap (NSN 6850-01-1817178). The mixture makes a paste which is used for cleaning parts on the washrack. Another soap (30 gallons/month, NSN 6850-01-2378004) is used in a steam cleaner on the washrack for cleaning parts. The waste is discharged down the drain to an oil/water separator connected to the sanitary sewer.

Phosphoric acid (5 gallons/year) is used for cleaning engine bolts. The waste is drummed and disposed as hazardous waste through DRMO.

h. 836 AD Hospital

Shop: Clinical/Pathology Lab Bldg: 400

Contact: Sgt Powell AUTOVON: 361-4732

Shop personnel perform clinical analysis for the hospital. Xylene (2-3 gallons/month) is drummed, stored for up to 90 days, and taken to DRMO for disposal as hazardous waste. Alcohol (12 ounces/day) is either used in process or discharged down the drain to the sanitary sewer. Formalin (10%, 200 gallons year) is discharged down the drain to the sanitary sewer.

Shop: Dental Clinic Bldg: 400

Contact: MSgt Soufert AUTOVON: 361-5005

Shop personnel perform dental care for military, retired military, and dependent personnel. Spent x-ray fixer (1-2 gallons/month) is processed through a silver recovery unit before being discharged down the drain to the sanitary sewer. Developer (1-2 gallons/month) is discharged down the drain to the sanitary sewer. Vapo-steril solution (2 gallons/month), dialdehyde solution (10 gallons/month), ultrasonic cleaner (1 gallon/month), Vacuucleaner (40 gallons/ month), and dental wax solvent (6 quarts/year) are discharged down the drain to the sanitary sewer. Chloroform (1 cup/year) and acetone (1 pint/year) are used in process. Potassium cyanide (<1 pint/year) is diluted with water before being discharged down the drain to the sanitary sewer.

i. 355 Component Repair Squadron (355 CRS)

Shop: Pneudraulics Bldg: 5045

Contact: TSgt Amick AUTOVON: 361-4331

Pneudraulics personnel inspect, service, repair, overhaul, and bench check hydraulic and pneumatic components on A-10 and OV-10 aircraft. The shop has one Rinsolve 140 tank for parts cleaning and one hydraulic test stand. Spent Rinsolve 140 (160 gallons/quarter) and waste hydraulic fluid (9 gallons/quarter) are drummed separately and disposed as POL through DRMO. Used rags are disposed as municipal waste.

Shop: Propulsion Bldg: 5245

Contact: MSgt South AUTOVON: 361-5376

Shop personnel perform maintenance on TF34 jet engines, GTCP36-50 auxiliary power units, non-powered AGE, and engine accessories. The shop services about 16 engines per month. Waste JP-4 (10 gallons/month) is drummed for disposal as POL through DRMO. Empty aerosol cans are disposed as municipal waste.

The chemical cleaning room has four tanks (165-gallon capacity each) containing Rinsolve 140 (Stoddard Solvent), carbon remover, paint stripper (BB3100), and hot water. The tanks are drained and cleaned on a quarterly basis. The waste chemicals are pumped from the tanks into 55-gallon drums and disposed of through DRMO as hazardous waste. The hot water tank drains into an oil/water separator connected to the sanitary sewer system. Most of the waste routinely generated in this area results from drag-out (dripping) of various chemicals from parts dipped into the tanks. Upon inspection, there was evidence of carbon remover in the oil/water separator.

j. 836 Combat Support Group (836 CSG)

Shop: Auto Hobby Contact: Mr Booker Bldg: 4531

AUTOVON: 361-3614

The Auto Hobby Shop is housed in a "garage type" building containing equipment for maintenance and repair of privately owned vehicles. Waste oil (250 gallons/month) is drained from vehicles into drip pans and poured into 55-gallon drums. The drums are emptied into a 1000-gallon underground waste oil storage tank. The waste oil is pumped out every five to six weeks by Metro Oil Company. Morale, Welfare, and Recreation (MWR) receives 8 cents/gallon for the oil. The shop has two Safety Kleen degreasing units (20-gallon capacity) and one Safety Kleen carburetor cleaning unit (20-gallon capacity) that are serviced by the contractor twice per month. Waste antifreeze (10 gallons/month) is disposed through Metro Oil Company. Albrite carwash soap (2.5 gallons/month, diluted 50:1) and Roughneck tire cleaner (3 gallons/month, diluted 30:1) are discharged down the drain to an oil/water separator connected to the sanitary sewer.

The shop has a dry paint booth. Paint filters (20/month) are disposed as municipal waste. The intake filters (20) are cleaned and reused. All paint wastes are taken home by the patrons; none is disposed by the shop.

k. 355 Aircraft Generation Squadron (355 AGS)

Shop: 355 AMU Bldg: 5251

Contact: MSgt Williams AUTOVON: 361-5025

Shop personnel perform general aircraft maintenance and servicing. Spray cans of Citrikleen are used for cleaning small parts. The empty aerosal cans are disposed of as municipal waste. Waste hydraulic fluid (55 gallons/month) and waste synthetic oil (55 gallons/month) are drummed and disposed as POL through DRMO. Waste JP-4 is collected in a fuel bowser and turned over to the Fire Department for use at the fire training pit for training purposes.

## III. RESULTS

## A. Wastewater Characterization

1. Flows. Wastewater flows are included in this report to aid in the design of a treatment system for industrial effluent. Daily flow rates are calculated using data obtained using Palmer-Bowlus flumes, water meters and ISCO Flow Meters. Flow results are presented in Table 6. Figure 3 is a sketch of the distribution of flow through the base.

2. Wastewater Analytical Results. In this section the results of the wastewater characterization study will be reviewed site by site. Each site will be evaluated as if regulated under the Pima County permit 2R 10760, however, as previously mentioned, only three locations are regulated, MH 111 (our site number 16, manhole 115), MH 376 (our site number 42) and MH 337 (our site 50, manhole 342). Complete site-by-site analytical results are included as Appendix G.



Figure 3. Wastewater Flow Distribution

Table 6. Flow Results

| MH    | SITE DESCRIPTION                               | FLOW (GAL/DAY) |
|-------|------------------------------------------------|----------------|
| 17    | Base Exchange (7th & Granite Streets)          | 110,000        |
| 68    | 3rd & Durango Streets                          | 32,000         |
| 82    | BX Service Station (Commanche Street)          | 18,000         |
| 102   | 1st & Jeddito Streets                          | 34,000         |
| 115   | 1st & Bola Streets                             | 176,000        |
| 119   | Sunglow Road                                   | 249,000        |
| 215   | Commissary/BEE Shop (7th & Arizola Streets)    | 30,000         |
| 261   | Transportation (Phoenix & Flagstaff Streets)   | 61,000         |
| 276   | 41st Line (Phoenix Streets)                    | 4,000          |
| 298   | Sunglow Road (Near Swan Gate)                  | 854,000        |
| 315-C | Frank-Borman Housing West Field (North Fence)  | 132,000        |
| 318   | Frank-Borman Housing West Field (Quijota Blvd) | 727,000        |
| 342   | AMARC                                          | 125,000        |
| 376   | Hospital (Alamo Avenue & Oro Street)           | 36,000         |
| 411-A | Lowell-Smith Housing (Ironwood Street)         | 88,000         |
| 468   | Flight Line (Douglas and Phoenix Sts.          | 53,000         |
| WM    | Aircraft Washrack (Phoenix & Douglas Streets)  | 9,000          |

#### a. Main Base Sewers

(1) Site 1, MH 123: Sewage from main base, housing, AMARC, and other industrial areas passes through manhole 123. The average phenol concentration (29.4  $\mu$ g/L) met the current limit (50  $\mu$ g/L). However, this concentration exceeded the proposed limit of 25  $\mu$ g/L. The phenol concentration measured by EPA Method 604 is 8.2  $\mu$ g/L. This method identifies only toxic phenolic compounds while EPA Method 420 is a screen of all phenolic and nontoxic phenoxy compounds. The BOD/COD ratio (122/309 mg/L) was .39. Volatile organic compounds (VOCs) present include methylene chloride (53  $\mu$ g/L) and 1,3-dichlorobenzene (14  $\mu$ g/L). The average oil and grease concentration (75.3 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.015 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(2) Site 2, MH 100, Arizola Ave: Sewage from main base and housing passes through manhole 100. The average phenol concentration (43.7  $\mu g/L)$  met the current limit (50  $\mu g/L)$ . However, this concentration exceeded the proposed limit of 25  $\mu g/L$ . The phenol concentration measured by EPA Method 604 was 15  $\mu g/L$ . The BOD/COD ratio (169/645 mg/L) was 0.26. Volatile organic compounds (VOCs) were present at low concentrations. The average oil and grease concentration (17 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.12 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations are below the limits. The wastewater flowing through manhole 100 was characterized by a high suspended solids, chemical oxygen demand, and moderate biochemical oxygen demand. Average total phenol (EPA Method 420) and phenol (EPA Method 604) suggested that most of the phenols were biodegradable. These were usually phenoxy compounds found in soaps or cleaning compounds.

- (3) Site 3, MH 215, Commissary, building 2615: The Commissary is connected to the sanitary sewer system at manhole 215. The phenol concentration (55  $\mu$ g/L) exceeded the current limit (50  $\mu$ g/L). The phenol concentration measured by EPA Method 604 was 29  $\mu$ g/L. The BOD/COD ratio (141/530 mg/L) was 0.27. Volatile organic compounds (VOCs) were not detectable. The average oil and grease concentration (4.5 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.015 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (4) Site 4, MH 77, Burger King, building 2521: Burger King is connected to the sanitary sewer system at manhole 77. The phenol concentration (74  $\mu$ g/L) exceeded the current limit (50  $\mu$ g/L). The phenol concentration measured by EPA Method 604 was 20  $\mu$ g/L. The COD/BOD ratio (122/480 mg/L) was 0.25. The average oil and grease concentration (4.5 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (5) Site 5, MH 17, BX, building 2441: The BX is connected to the sanitary sewer system at manhole 2441. EPA Method 420 was not performed due to an insufficient sample. The phenol concentration measured by EPA Method 604 is 13  $\mu$ g/L. The BOD/COD ratio (209/200 mg/L) of 1.0 showed the wastewater was domestic. Volatile organic compound (VOC) concentrations were below the analytical detection limit. The average oil and grease concentration (1.9 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.02 mg/L) was below the limit (1 mg/L).
- (6) Site 6, Laundry Facility, building 5000: The laundry facility is connected to the sanitary sewer system at an undesignated manhole near building 5000. The phenol concentration (40  $\mu$ g/L) met the current limit (50  $\mu$ g/L). However, this concentration exceeded the proposed limit of 25  $\mu$ g/L. The phenol concentration measured by EPA Method 604 was 33  $\mu$ g/L. The BOD/COD ratio (224/600 mg/L) was 0.37. The average oil and grease concentration (896 mg/L) exceeded the limit (100 mg/L). The average cyanide concentration (0.015 mg/L) was below the limit (1 mg/L). The wastewater flowing from the laundry facility is characterized by a moderate chemical oxygen demand and biochemical oxygen demand. High oil and grease concentrations along with low petroleum hydrocarbon concentrations point more to a greasy waste typical of food service activities. High boron and surfactant levels are typical of laundry facility wastes.
- (7) Site 7, MH 119, N. of North Ramp: A nearly equal amount of wastewater from industrial area and main base passes through manhole 119. The average phenol concentration (30  $\mu$ g/L) met the current limit (50  $\mu$ g/L). However, this concentration exceeded the proposed limit of 25  $\mu$ g/L. The phenol concentration measured by EPA Method 604 was 13  $\mu$ g/L. The BOD/COD ratio (166/548 mg/L) was 0.30. Volatile organic compounds (VOCs) present included methylene chloride (24.6  $\mu$ g/L). The average oil and grease concentration (27.3 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits. Methylene chloride is used in solvents and paint strippers; however, shop personnel stated it is not discharged to the sanitary sewers.

- (8) Site 8, MH 270C, Auto Hobby Shop: The Auto Hobby Shop is connected to the sanitary sewer system at manhole 270C. The phenol concentration (59  $\mu$ g/L) exceeded the current limit (50  $\mu$ g/L). The BOD/COD ratio (204/850 mg/L) was 0.24. Volatile organic compounds (VOCs) present included ethyl benzene (7.0  $\mu$ g/L) found in gasoline. The average oil and grease concentration (96 mg/L) approached the limit (100 mg/L).
- (9) Site 9, MH 23, NCO Club, building 4455: The NCO Club and the Golf Course Snack Bar contribute to the flow in manhole 23. The phenol concentration (37  $\mu$ g/L) met the current limit (50  $\mu$ g/L). However, this concentration exceeded the proposed limit of 25  $\mu$ g/L. The BOD/COD ratio (255/975 mg/L) was 0.26. The oil and grease concentration (4 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.005 mg/L) was below the limit (1 mg/L).
- (10) Site 10, Dining Facility, building 4100: The dining facility is connected to the sanitary sewer system through a grease trap. This sample was taken from the clean-out portal. The average phenol concentration (15  $\mu$ g/L) met the current limit (50  $\mu$ g/L). This concentration also met the proposed limit of 25  $\mu$ g/L. The BOD/COD ratio (412/1500 mg/L) was 0.27. The average oil and grease concentration (40,800 mg/L) exceeded the limit (100 mg/L). High concentrations of oils and grease can be attributed to disposal of waste oil and fat through the sewer system. Cyanide was not detected. All regulated toxic metal concentrations were below the limits.
- (11) Site 11, Oil/water separator, 868 TMMS AGE, Corrosion Control, building 72: Separator effluent contained high surfactant (150 mg/L) and moderate phenol (28 mg/L) concentrations. The BOD/COD ratio (467/900 mg/L) was 0.52.
- (12) Site 12, Oil/water separator, 868 TMMS, Vehicle Maintenance, building 73: Separator effluent contained high surfactant (300 mg/L) and high phenol (1150  $\mu$ g/L) concentrations. The BOD/COD ratio (35,027/45,000 mg/L) was 0.78. The oil and grease (912 mg/L) and total extractable petroleum hydrocarbons (512 mg/L) concentrations were high. Small amounts of methylene chloride (8.1  $\mu$ g/L) and 1,2-dichloroethane (7.4  $\mu$ g/L) were present in the waste. All regulated toxic metal concentrations were below the limits. Results suggest that a phenoxyl surfactant is being used for vehicle washing and that emulsified petroleum products are being washed into the sewer through the oil separator.
- (13) Site 13, Oil/water separator, 868 TMMS, building 74: Total phenols (<10  $\mu$ g/L) were low. The BOD/COD ratio (17/500 mg/L) was 0.034. Oil and grease (0.6 mg/L) and total extractable petroleum hydrocarbons (0.6 mg/L) concentrations were low. Small amounts of 1,2-dichloroethane (13  $\mu$ g/L) and 1,1,1-trichloroethane (13  $\mu$ g/L) were present in the waste. All regulated toxic metals concentrations were below the limits.
- (14) Site 14, Oil/water separator, 23 CAMS, Propulsion Washrack, building 1360: The total phenol (28  $\mu$ g/L) concentration was low. The BOD/COD ratio (86/500 mg/L) was 0.17. Oil and grease (42 mg/L) and total extractable petroleum hydrocarbons (8.4 mg/L) concentrations were low. Large amounts of 1,3-dichlorobenzene (2989  $\mu$ g/L) and 1,2-dichloroethane (896  $\mu$ g/L)

were present in the wastewater. These compounds are typically found in carbon removers and levels were high enough to suggest improper disposal. All regulated toxic metal concentrations were below the limits.

(15) Site 15, Oil/water separator, Entomology Shop, building 73: Separator effluent contained phenol (183  $\mu$ g/L). The BOD/COD ratio (129/500 mg/L) was 0.26. Oil and grease (3.4 mg/L) and total extractable petroleum hydrocarbons (1.3 mg/L) concentrations were low. Small amounts of methylene chloride (4.7  $\mu$ g/L), ethylbenzene (14  $\mu$ g/L), and toluene (2.4  $\mu$ g/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits.

### b. Industrial Area Sewers

- (16) Site 16, MH 115, First Street: Sewage from most of the flight line industrial shops passes through manhole 115. The flow through this manhole is regulated under the Pima County Pretreatment Discharge Ordinance. The average phenol concentration (21.8  $\mu$ g/L) met the current limit (50  $\mu$ g/L). This concentration also met the proposed limit of 25  $\mu$ g/L. The phenol concentration measured by EPA Method 604 was 6.9  $\mu$ g/L. The BOD/COD ratio (62/310 mg/L) was 0.2. Volatile organic compounds (VOCs) present included 1,3-dichlorobenzene (one-day concentration of 64  $\mu$ g/L) and 1,4-dichlorobenzene (one-day concentration of 31  $\mu$ g/L). These possibly could be originating from site 14, the CAMS Propulsion Branch washrack. The average oil and grease concentration (11.95 mg/L) was below the limit (100 mg/L). The average cyanide concentration (.01 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (17) Site 17, MH 258, Phoenix St: Sewage from industrial shops located on the NE side of Phoenix St. passes through MH 258. The average phenol concentration (27.7  $\mu$ g/L) met the current limit (50  $\mu$ g/L). This concentration exceeded the proposed limit of 25  $\mu$ g/L. The phenol concentration measured by EPA Method 604 was 26  $\mu$ g/L. The BOD/COD ratio (167/1082  $\mu$ g/L) was 0.15. Several volatile organic compounds (VOCs) were present at low concentrations. The average oil and grease concentration (7.5  $\mu$ g/L) was below the limit (100  $\mu$ g/L). The average cyanide concentration (0.012  $\mu$ g/L) was below the limit (1  $\mu$ g/L). All regulated toxic metal concentrations were below the limits.
- (18) Site 18, MH 274A, SE Phoenix St.: Sewage from the F-16 alert area and EC-130H aircraft industrial shops passes through manhole 274A. The phenol concentration (<10  $\mu$ g/L) met the current limit (50  $\mu$ g/L). This concentration also met the proposed limit of 25  $\mu$ g/L. The phenol concentration measured by EPA Method 604 is <10  $\mu$ g/L. The COD/BOD ratio (25/425 mg/L) was 0.06. The oil and grease concentration (3.0 mg/L) was below the limit (100 mg/L). The cyanide concentration (0.005 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (19) Site 19, Corrosion Control, building 5255: The 23 CAMS Corrosion Control Shop is connected to the sanitary sewer system at an undesignated manhole. The phenol concentration (100  $\mu$ g/L) exceeded the current limit. The BOD/COD ratio (72/<1mg/L) was not calculated as the COD result was questionable. The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metals concentrations were below the limits. The phenol was probably from washing, not paint stripping, since with paint stripping methylene chloride usually can be found also.

- (20) Site 20, 41 ECS Engine Shop, building 133: Sewage from the 41 ECS Engine Shop is connected to the sanitary sewer system at an undesignated manhole. The phenol concentration (50  $\mu$ g/L) equaled the current limit (50  $\mu$ g/L). However, this concentration exceeded the proposed limit of 25  $\mu$ g/L. The BOD/COD ratio (51/550 mg/L) was 0.09. Volatile organic compound (VOCs) concentrations were below the analytical detection limit. The oil and grease concentration (28.8 mg/L) was below the limit (100 mg/L). All regulated toxic metal concentrations were below the limits.
- (21) Site 21, Oil/water separator, Fire Station, building 4821: Separator effluent contains phenol (15  $\mu$ g/L). The BOD/COD ratio (7/450 mg/L) of 0.020 was questionable. Oil and grease (51.2 mg/L) and total extractable petroleum hydrocarbons (44.8 mg/L) concentrations were low. Volatile organic compound (VOC) concentrations were below the analytical detection limit. All regulated toxic metal concentrations were below the limits.
- (22) Site 22, Oil/water separator, Bulk Fuel Storage, building 4821: Separator effluent contained no phenol (<10  $\mu$ g/L). The BOD/COD ratio (1.1/40 mg/L) indicates the wastewater is not concentrated. Oil and grease (28.6 mg/L) and total extractable petroleum hydrocarbons (27.4 mg/L) concentrations were low. A trace of methylene chloride (0.5  $\mu$ g/L) was present in the wastewater. All regulated toxic metal concentrations were below the limits.
- (23) Site 23, Oil/water separator, 41 ECS AGE shop, building 125: Separator effluent contained phenol (105  $\mu$ g/L). The BOD/COD ratio (1585/6000 mg/L) was 0.26. Oil and grease (10.8 mg/L) and total extractable petroleum hydrocarbons (5.7 mg/L) concentrations were low. Trans-1,2-dichloroethane (3  $\mu$ g/L) was present in the wastewater. Surfactant (1900 mg/L) levels were high. All regulated toxic metal concentrations were below the limits.
- (24) Site 24, Oil/water separator, Fire Truck Maintenance, building 4823: Separator effluent contained high surfactant (1750 mg/L) and high phenol (820 ug/L) concentrations. The BOD/COD ratio (6,150/9,000 mg/L) was 0.68 oil and grease (1176 mg/L) and total extractable petroleum hydrocarbons (256 mg/L) concentrations were high. Small amounts of benzene (0.8  $\mu$ g/L) and 1,1,1-trichloroethane (5.5  $\mu$ g/L) were present in the wastewater. All regulated toxic metal concentrations were below the limits. High total phenol and surfactant concentrations, with traces of zinc and titanium, suggest the use of an aggressive cleaner, like aircraft surface contact cleaner.
- (25) Site 25, Oil/water separator, 355 AGS AMU, building 4809: Separator effluent contained low surfactant (14 mg/L) and moderate phenol (91  $\mu$ g/L) concentrations. The BOD/COD ratio (401/2,250 mg/L) was 0.18. Oil and grease (72.8 mg/L) and total extractable petroleum hydrocarbons (42 mg/L) concentrations were moderately low. Small amounts of 1,1,1-trichloroethane (5.9  $\mu$ g/L), 1,2-dichloroethane (5.3  $\mu$ g/L), and chlorobenzene (49  $\mu$ g/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits.
- (26) Site 26, Oil/water separator, 355 EMS AGE, building 4712: Separator effluent contained high surfactant (210 mg/L) and high phenol (510  $\mu$ g/L) concentrations. The BOD/COD ratio (298/1,400) was 0.14. Oil and grease (75.2 mg/L) and total extractable petroleum hydrocarbons (66 mg/L) concentrations were high. Small amounts of trans-1,2-dichloroethane (6.7  $\mu$ g/L) and a significant concentration of methylene chloride (501  $\mu$ g/L) were present in

the wastewater. The cadmium level (481  $\mu$ g/L) exceeded the permit limit. Paint stripping wastes typically contain cadmium, zinc, methylene chloride and phenols. All other regulated toxic metal concentrations were below the limits.

- (27) Site 27, Oil/water separator, 836 TRANS Refueling Maintenance, building 4812: Separator effluent contained moderate surfactant (110 mg/L) and phenol (50  $\mu$ g/L) concentrations. The BOD/COD ratio (381/1,000 mg/L) was 0.38. Oil and grease (80.4 mg/L) and total extractable petroleum hydrocarbons (75.6 mg/L) concentrations were approaching the limit. Volatile organic compounds detected in the wastewater included: benzene (234  $\mu$ g/L), 1,3-dichlorobenzene (627  $\mu$ g/L), ethylbenzene (607  $\mu$ g/L), and toluene (367  $\mu$ g/L). These volatiles, except for 1,3-dichlorobenzene, a solvent, were from fuel. All regulated toxic metal concentrations were below the limits.
- (28) Site 28, Oil/water separator, Refueling Maintenance, building 4815: Separator effluent contained low surfactant (29 mg/L) and low phenol (20  $\mu$ g/L) concentrations. The BOD/COD ratio (49/200 mg/L) was 0.25. Oil and grease (2.6 mg/L) and total extractable petroleum hydrocarbons (2.6 mg/L) concentrations were low. All regulated VOCs concentrations were within the limits. All regulated toxic metal concentrations were below the limits.
- (29) Site 29, Oil/water separator, 355 EMS AGE, building 4712: No phenols analyses were recorded. The BOD/COD ratio (298/1400 mg/L) was 0.21.
- (30) Site 30, Oil/water separator, 355 CRS Fuel Systems Repair, building 5256: Separator effluent contained low surfactant (<0.1 mg/L) and phenol (<10  $\mu$ g/L) concentrations. The BOD/COD ratio (19/250 mg/L) was 0.08. Oil and grease (<0.3 mg/L) and total extractable petroleum hydrocarbons (<0.3 mg/L) concentrations were low. Small amounts of methylene chloride (4.3  $\mu$ g/L) and trichlorofluoromethane (4.7  $\mu$ g/L) were present in the waste. All regulated toxic metal concentrations were below the limits.
- (31) Site 31, Oil/water separator, 355 CRS Fuel Systems Repair, building 5256: Separator effluent contained low surfactant (1.3 mg/L) and phenol (<10  $\mu$ g/L) concentrations. The BOD/OD ratio (36/500 mg/L) was 0.07. Oil and grease (2.9 mg/L) and total extractable petroleum hydrocarbons (1.3 mg/L) concentrations were low. Small amounts of methylene chloride (5.6  $\mu$ g/L) and trichlorofluoromethane (4.1  $\mu$ g/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits.
- (32) Site 32, Oil/water separator, 23 CAMS Corrosion Control, building 5255: Separator effluent contained low surfactant (0.4 mg/L) and high phenol (243  $\mu$ g/L) concentrations. The BOD/COD ratio (53/600 mg/L) was 0.09. Oil and grease (2.7 mg/L) and total extractable petroleum hydrocarbons (2.9 mg/L) concentrations were low. Several VOCs were present in the wastewater including: methylene chloride (2993  $\mu$ g/L), tetrachloroethylene (153  $\mu$ g/L), ethylbenzene (308  $\mu$ g/L), toluene (356  $\mu$ g/L), cis-1,2-dichloroethene (30  $\mu$ g/L), and 1,4-dichlorobenzene (4.4  $\mu$ g/L). All regulated toxic metals concentrations were below the limits. These results suggest that paint stripper was being washed off parts and into the drains and the separator, contrary to what shop personnel told the hazardous waste survey team.

- (33) Site 33, Oil/water separator, 255 AGS AMU, building 5251: Separator effluent contained low surfactant (3.6 mg/L) and phenol (42  $\mu$ g/L) concentrations. The BOD/COD ratio (45/200 mg/L) was 0.23. Oil and grease (6.2 mg/L) and total extractable petroleum hydrocarbons (4.6 mg/L) concentrations were low. A small amount of methylene chloride (29  $\mu$ g/L) was present in the wastewater. All regulated toxic metals concentrations were below the limits.
- (34) Site 34, Oil/water seperator, 355 CRS Propulsion Branch, building 5245: Separator effluent contained high surfactant (1650 mg/L) and phenol (380  $\mu$ g/L) concentrations. The BOD/COD ratio (1,633/17,500 mg/L) was 0.09. Oil and grease (206.4 mg/L) and total extractable petroleum hydrocarbons (51.2 mg/L) concentrations were high. Small amounts of methylene chloride (12  $\mu$ g/L), trans-1,2-dichloroethene (11  $\mu$ g/L), 1,1-dichloroethene (7.5  $\mu$ g/L), and 1,1,1-trichloroethane (7.7  $\mu$ g/L) were present in the wastewater. Large concentrations of toxic metals including zinc (64,790  $\mu$ g/L), cadmium (110  $\mu$ g/L), lead (1,190  $\mu$ g/L), and titanium (13,000  $\mu$ g/L) were present in the wastewater. The zinc, cadmium, and lead levels exceeded the permit limits.
- (35) Site 35, Oil/water separator, 355 AGS AMU, building 5430: Separator effluent contained low surfactant (18.5 mg/L) and high phenol (157 µg/L) concentrations. The BOD/COD ratio (430/900 mg/L) was 0.47. Oil and grease (568 mg/L) and total extractable petroleum hydrocarbons (136 mg/L) concentrations were high. Small amounts of methylene chloride (5.0 µg/L) and larger concentrations of the decarbonizing solvent, 1,3-dichlorobenzene (37 µg/L) were present in the wastewater. The cadmium level (128 µg/L) exceeded the permit limit. Paint stripping wastes and wastewater from aircraft washing, typically contained cadmium. Aircraft washing could be responsible for the high concentrations of petroleum hydrocarbons. All other regulated toxic metals concentrations were below the limits.
- (36) Site 36, Oil/water separator, Transportation, building 4701: Separator effluent contained low surfactant (0.6 mg/L) and phenol (11 μg/L) concentrations. The BOD/COD ratio (7/500 mg/L) was 0.01. Oil and grease (0.6 mg/L) and total extractable petroleum hydrocarbons (0.6 mg/L) concentrations were low. Small amounts of toluene (1.4 μg/L) were present in the wastewater. All regulated toxic metal concentrations were below the limits.
- (37) Site 37, Oil/water separator, Allied Trades, building 4705: Separator effluent contained high surfactant (126 mg/L) and phenol (112  $\mu$ g/L) concentrations. The BOD/COD ratio (981/3250 mg/L) was 0.30. Oil and grease (70.4 mg/L) and total extractable petroleum hydrocarbons (70.4 mg/L) concentrations were low. All regulated toxic metal concentrations were below the limits.
- (38) Site 38, Oil/water separator, 355 EMS Inspection, building 5607: Separator effluent contained low surfactant (2.4 mg/L) and phenol (15  $\mu$ g/L) concentrations. The BOD/COD ratio (46/500 mg/L) was 0.09. Oil and grease (23.7 mg/L) and total extractable petroleum hydrocarbons (2.6 mg/L) concentrations were low. Small amounts of 1,4-dichlorobenzene (9.3  $\mu$ g/L), trans-1,2- dichloroethene (16  $\mu$ g/L), and 1,1,1-trichloroethane (2.1  $\mu$ g/L) were present in the wastewater. All regulated toxic metal concentrations were below the limits.

(39) Site 39, Oil/water separator, 355 Armament, building 4710: Separator effluent contained high surfactant (380 mg/L) and phenol (105  $\mu$ g/L) concentrations. The BOD/COD ratio (694/2,000 mg/L) was 0.35. Oil and grease (132 mg/L) and total extractable petroleum hydrocarbons (84 mg/L) concentrations were high. Small amounts of methylene chloride (7.9  $\mu$ g/L), chloroethane (20  $\mu$ g/L), and 1,1-dichloroethane (46  $\mu$ g/L) were present in the wastewater. Some washoff from parts degreasing was entering the drains to the separator. The lead level (498  $\mu$ g/L) approached the permit limit. All regulated toxic metal concentrations were below the limits.

(40) Site 40, MH 468, Aircraft Washrack: Wash water from the aircraft washrack passes through manhole 468. The average phenol concentration (79  $\mu$ g/L) exceeded the current limit (50  $\mu$ g/L). The phenol concentration measured by EPA Method 604 was 7  $\mu$ g/L, indicating the influence of phenoxyl detergents on the phenols results. The BOD/COD ratio (160/329 mg/L) was 0.49. The average oil and grease concentration (4.3 mg/L) was below the limit (100 mg/L). A small amount of 1,3-dichlorobenzene (9  $\mu$ g/L) was present in the wastewater. The average cyanide concentration (0.02 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits. Figure 4 shows the aircraft washrack and industrial treatment plant (separator) discharging into MH 468.



Figure 4. Aircraft Washrack and Separator, Site 40

### c. Housing, Hospital, and Test Stand Sewers

- (41) Site 41, MH 298, Near Swan Gate: Wastewater from housing, main base, hospital, and 868 TMMS passes through manhole 298. The average phenol concentration (26  $\mu$ g/L) met the current limit (50  $\mu$ g/L). However, this concentration does not meet the proposed limit (25  $\mu$ g/L). The phenol concentration measured by EPA Method 604 was 5.9  $\mu$ g/L. The BOD/COD ratio (240/240 mg/L) was 1.0. The average oil and grease concentration (13.25 mg/L) was below the limit (100 mg/L). Several VOCs including 1,3-dichlorobenzene (1-day concentration, 58  $\mu$ g/L), ethylbenzene (5-day average concentration, 5.3  $\mu$ g/L), and 1,4-dichlorobenzene (5-day average concentration, 2.7  $\mu$ g/L) were present in the wastewater. The average cyanide concentration (0.007 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (42) Site 42, MH 376, Alamo Ave: Wastewater from the hospital passes through manhole 376. The average phenol concentration (40.75  $\mu$ g/L) met the current limit (50  $\mu$ g/L). However, this concentration would exceed the proposed limit (25  $\mu$ g/L). The phenol concentration measured by EPA Method 604 was 5  $\mu$ g/L. The BOD/COD ratio (280/847 mg/L) is 0.33. The average oil and grease concentration (8.5 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.005 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (43) Site 43, MH 502, Quijota Blvd: Wastewater from the housing area passes through manhole 502. The average phenol concentration (38  $\mu g/L$ ) met the current limit (50  $\mu g/L$ ). However, this concentration would exceed the proposed limit (25  $\mu g/L$ ). The phenol concentration measured by EPA Method 604 was 20  $\mu g/L$ . The BOD/COD is (152/280 mg/L) was 0.54. The average oil and grease concentration (36 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.006 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (44) Site 44, MH 315A, Housing Branch: Wastewater from the housing area passes through manhole 315A. The average phenol concentration (34  $\mu$ g/L) met the current limit (50  $\mu$ g/L). However, this concentration exceeded the proposed limit (25  $\mu$ g/L). The phenol concentration measured by EPA Method 604 was 8  $\mu$ g/L. The BOD/COD ratio (159/293 mg/L) was 0.54. The average oil and grease concentration (8.4 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.007 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (45) Site 45, MH 13, Davenport St: Wastewater from the housing area passes through manhole 13. The average phenol concentration (44  $\mu$ g/L) met the current limit (50  $\mu$ g/L). However, this concentration exceeded the proposed limit (25  $\mu$ g/L). The phenol concentration measured by EPA Method 604 is 8  $\mu$ g/L. The BOD/COD ratio (152/590 mg/L) was 0.27. The average oil and grease concentration (45 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.007 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

- (46) Site 46, Oil/water separator, Test Stand, building 224: Separator effluent contained low surfactant (0.1 mg/L) and high phenol (70 µg/L) concentrations. The BOD/COD ratio (29/220 mg/L) was 0.13. Oil and grease (103 mg/L) and total extractable petroleum hydrocarbons (56.8 mg/L) concentrations were high. Several VOCs including 1,1-dichloroethene (52 µg/L), 1,1-dichloroethane (199 µg/L), trans-1,2-dichloroethene (166 µg/L), trichloroethylene (479 µg/L), and 1,1,1-trichloroethane (1309 µg/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits. The VOC results suggested improper disposal of solvents since the use of trichloroethylene has been discontinued for some years.
- (47) Site 47, Oil/water separator, Test Stand, building 225: Separator effluent contained low surfactant (0.1 mg/L) and high phenol (725 µg/L) concentrations. The BOD/COD ratio (8,308/15,000 mg/L) was 0.55. Oil and grease (13.4 mg/L) and total extractable petroleum hydrocarbons (7.3 mg/L) concentrations were low. Several VOCs including methylene chloride (32 µg/L), 1,4-dichlorobenzene (39 µg/L), and 1,1,1-trichloroethane (14 µg/L) were present in the wastewater. The lead level (579 µg/L) exceeded the permit limit. All other regulated toxic metal concentrations were below the limits. Results indicate paint stripping or paint stripping waste disposal had occurred at this location.
- (48) Site 48, Oil/water separator, Test Stand, building 225 (NTR): Separator effluent contained low surfactant (3.4 mg/L) and phenol (35  $\mu$ g/L) concentrations. The BOD/COD ratio (138/750 mg/L) is 0.18. Oil and grease (13.6 mg/L) and total extractable petroleum hydrocarbons (2.9 mg/L) concentrations were low. Amounts of trans-1,2-dichloroethene (93  $\mu$ g/L) and 1,1,1-trichloroethane (5.3  $\mu$ g/L) were found in the waste. Degreasing or disposal of degreasers has occurred at this location. All regulated toxic metals concentrations were below the limits.
- (49) Site 49, Oil/water separator, Test Stand, South Taxiway Run-up Pad: Separator effluent contained low surfactant (1.2 mg/L) and phenol (17  $\mu$ g/L) concentrations. The BOD/COD ratio (45/600 mg/L) was 0.08. Oil and grease (1.6 mg/L) and total extractable petroleum hydrocarbons (<0.3 mg/L) concentrations were low. All regulated toxic metal concentrations were below the limits.

#### d. AMARC

(50) Site 50, MH 342, AMARC Aircraft Storage Area: Wastewater from the AMARC Storage Area passes through manhole 342. The average phenol concentration (24  $\mu$ g/L) met the current limit (50  $\mu$ g/L). This concentration also meets the proposed limit (25  $\mu$ g/L). The phenol concentration measured by EPA Method 604 was 13  $\mu$ g/L. The BOD/COD ratio (73/485 mg/L) was 0.15. The average oil and grease concentration (12 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

- (51) Site 51, AMARC Washrack: Wastewater from the AMARC washrack is connected to the sanitary sewer system at an undesignated manhole. The average phenol concentration (12.5  $\mu$ g/L) met the current limit (50  $\mu$ g/L). This concentration also meets the proposed limit (25  $\mu$ g/L). The BOD/COD ratio (119/392 mg/L) was 0.30. The average oil and grease concentration (4 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.007 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.
- (52) Site 52, MH 364, AMARC, Small Parts Cleaning: Wastewater from AMARC Small Parts Cleaning passes through manhole 364. The phenol concentration (580  $\mu$ g/L) exceeded the current limit (50  $\mu$ g/L). The phenol concentration mrasured by EPA Method 604 was 170  $\mu$ g/L. The oil and grease concentration (21.6 mg/L) was below the limit (100 mg/L). Several VOCs including methylene chloride (10  $\mu$ g/L), 1,2-dichloroethane (8.2  $\mu$ g/L), and 1,1,1-trichloroethane (10  $\mu$ g/L) were present in the wastewater. The cyanide concentration (0.03 mg/L) was below the limit (1 mg/L). The cadmium level (464  $\mu$ g/L) exceeded the permit limit. Paint stripping wastes typically contained cadmium. All other regulated toxic metal concentrations were below the limits.
- (53) Site 53, Oil/water separator, AMARC Out Processing, building 7408: Separator effluent contained low surfactant (1.4 mg/L) and phenol (30  $\mu$ g/L) concentrations. The BOD/COD ratio (45/400 mg/L) was 0.11. Oils and grease (13.8 mg/L) and total extractable petroleum hydrocarbons (11 mg/L) concentrations were low. Small amounts of 1,3-dichlorobenzene (45  $\mu$ g/L), chloroform (1.2  $\mu$ g/L), dichlorodifluoromethane (1.5  $\mu$ g/L), and toluene (0.8  $\mu$ g/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits.
- (54) Site 54, Oil/water separator, NDI, building 7401: Separator effluent contained low surfactant (32 mg/L) and high phenol (870  $\mu$ g/L) concentrations. The BOD/COD ratio (183/1150 mg/L) was 0.16. Oil and grease (568 mg/L) and total extractable petroleum hydrocarbons (211 mg/L) concentrations were low. Small amounts of 1,1-dichloroethane (0.6  $\mu$ g/L), methylene chloride (7.9  $\mu$ g/L), and 1,1,1-trichloroethane (9.3  $\mu$ g/L) were present in the wastewater. The cadmium level (407  $\mu$ g/L) exceeded the permit limit. Paint stripping wastes typically contained phenols, methylene chloride, and metals including cadmium. All other regulated toxic metal concentrations were below the limits.
- (55) Site 55, Oil/water separator, AMARC, Engine Can Yard, building 7340: Separator effluent contained low surfactant (48 mg/L) and high phenol (2550 µg/L) concentrations. The BOD/COD ratio (2167/6250 mg/L) was 0.35. Oil and grease (235 mg/L) and total extractable petroleum hydrocarbons (156.8 mg/L) concentrations were high. Several VOCs including carbon tetrachloride (28 µg/L) and 1,1,1-trichloroethane (76 µg/L) were present in the wastewater. The cadmium (326 µg/L) and lead (985 µg/L) levels exceeded the permit limits. All other regulated toxic metals concentrations were below the limits. However, the zinc concentration (2.33 mg/L) approached the limit of 2.6 mg/L.

- (56) Site 56, Oil/water separator, AMARC Washrack, building 7425: Separator effluent contained high surfactant (440 mg/L) and moderate phenol (40 µg/L) concentrations. The BOD/COD ratio (987/4250 mg/L) was 0.23. Oil and grease (504 mg/L) and total extractable petroleum hydrocarbons (408 mg/L) concentrations were high. Small amounts of methylene chloride (46 µg/L) and tetrachloroethylene (22 µg/L) were present in the waste. The cadmium level (766 µg/L) exceeded the permit limit. Paint stripping wastes typically contained phenols, methylene chloride, and cadmium. All other regulated toxic metal concentrations were below the limits.
- (57) Site 57, Oil/water separator, AMARC Support Equipment, building 7222: Separator effluent contained low surfactant (4.9 mg/L) and high phenol (227  $\mu$ g/L) concentrations. The BOD/COD ratio (222/1000 mg/L) was 0.222. Oil and grease (156.8 mg/L) and total extractable petroleum hydrocarbons (145.6 mg/L) concentrations were high. Small amounts of 1,1-dichloroethene (11  $\mu$ g/L), 1,2-dichloroethane (4.3  $\mu$ g/L), and toluene (14  $\mu$ g/L) were present in the waste. The cadmium level (135  $\mu$ g/L) exceeded the permit limit. Paint stripping wastes typically contained metals such as zinc and cadmium, phenols and methylene chloride. All other regulated toxic metal concentrations were below the limits.
- (58) Site 58, Oil/water separator, AMARC In Processing, building 7448A: Separator effluent contained low surfactant (9.2 mg/L) and high phenol (109  $\mu$ g/L) concentrations. The BOD/COD ratio (5/575 mg/L) was questionable due to the low BOD result. Oil and grease (110.4 mg/L) and total extractable petroleum hydrocarbons (103.2 mg/L) concentrations were high. All regulated toxic metals concentrations were below the limits.
- (59) Site 59, Oil/water separator, AMARC In Processing, building 7448B: Separator effluent contained low surfactant (9.4 mg/L) and phenol (105  $\mu$ g/L) concentrations. The BOD/COD ratio (69/900 mg/L) was 0.08. Oil and grease (48 mg/L) and total extractable petroleum hydrocarbons (19 mg/L) concentrations were low. Small amounts of 1,2-dichloroethane (8.6  $\mu$ g/L), 1,1-dichloroethene (5.6  $\mu$ g/L), 1,1,1-trichloroethane (5.4  $\mu$ g/L), and carbon tetrachloride (6.0  $\mu$ g/L) were present in the waste. All regulated toxic metals concentrations were below the limits.
- (60) Site 60, Officer's Club: The Officer's Club is connected to the sanitary sewer system through a grease trap. This sample was from the clean-out portal. The average phenol concentration (177  $\mu$ g/L) exceeded the current limit (50  $\mu$ g/L). This concentration also exceeded the proposed limit of 25  $\mu$ g/L. The BOD/COD ratio (1800/1850 mg/L) of 0.97 showed the wastewater is domestic. The average oil and grease concentration (115.2 mg/L) exceeded the limit (100 mg/L). Cyanide (0.022 mg/L) met the limit of 1 mg/L. All regulated toxic metal concentrations are below the limits.
- 3. Industrial Wastewater Laboratory Results. The results indicated that cadmium which averaged 110  $\mu$ g/L in the sample was reduced to less than 100  $\mu$ g/L in all cases. The zinc concentration was reduced from 335  $\mu$ g/L to less than 100  $\mu$ g/L and iron reduced from an average of 3300 to 352  $\mu$ g/L with NaOH. Unfortunately, the ICP metals screen sensitivity was not sufficient to determine percent removal, however, either alum or sodium hydroxide addition appears to reduce the target metal, cadmium below the limit. Analytical results are presented in Appendix H.

- B. Summary of Waste Disposal Practices at Davis-Monthan AFB. The waste disposal practices for different categories of waste are summarized in this section. A summary of disposal practices for each waste category is contained in Appendix B.
- 1. Waste oils and fluids are placed in bowsers, 55-gallon drums or underground waste oil storage tanks and stored at the designated accumulation site. The waste is transported from the accumulation sites to DRMO and stored until the waste oil contractor picks it up. In some cases, waste oils and fluids are discharged to oil/water separators that are periodically cleaned out by a contractor. Currently, waste oils and fluids are sold as POL. The payment received is based on demand at the time of disposal.
- 2. Waste paints and thinners are generally placed in 5-gallon cans or 55-gallon drums and stored at the appropriate accumulation site. The waste is then transported to DRMO for storage until it is picked up by a contractor for disposal as hazardous waste.
- 3. Uncontaminated fuel is taken to POL for reclamation. Fuel contaminated with less than 10% water is used at the FTP. Other contaminated fuel is drummed and disposed as POL through DRMO.
- 4. Used lead-acid batteries are drained into sinks and rinsed out with water. The spent electrolyte and rinse water are neutralized before being discharged down the drain to the sanitary sewer.
- 5. Waste petroleum-based solvents (e.g., Rinsolve 140) are drummed and disposed as POL through DRMO. Other solvents (e.g., TCA, toluene, and MEK) are either used in process or drummed and disposed as hazardous waste through DRMO.
- 6. Waste fixers are processed through a silver recovery unit before being discharged down the drain to the sanitary sewer. All other photo chemicals are discharged down the drain to the sanitary sewer.
- 7. Waste dye-penetrant and magnetic particle solution generated at NDI shops are drummed and disposed through DRMO. Waste emulsifier and developer are discharged down the drain to the sanitary sewer.
- 8. Dirty cleaning rags from most shops are disposed as municipal waste. The 355 EMS has a contract with Industrial Uniform Services for cleaning rags.
- 9. Paint filters from the dry paint booth at 836 TRANS Allied Trades, 836 CSG Auto Hobby, and 41 ECS Corrosion Control are disposed as municipal waste.
- 10. Speedy Dry, used to clean up small spills, is disposed as municipal waste.
  - 11. Empty aerosol cans are disposed as municipal waste.
- 12. Waste antifreeze is stored in 55-gallon drums and disposed through DRMO.

- 13. Rinse water generated from triple-rinsing pesticide and herbicide containers and cleaning equipment is used for mixing the chemicals. A small amount of triple-rinse water is discharged down the drain to the sanitary sewer.
- 14. Soaps and cleaning compounds are discharged down the drain to oil/water separators connected to the sanitary sewer.
- 15. Chemicals used in heating and cooling facilities are discharged down the drain to the sanitary sewer.
- 16. Chemicals used at the Dental Clinic are diluted with water and discharged down the drain to the sanitary sewer.
- 17. Plastic bead blasting media is disposed as municipal waste. Baseline waste analyses have been performed; the waste was determined to be nonhazardous.

#### IV. CONCLUSIONS

- A. The wastewater flowing through site 1 (manhole 123) is characterized by moderate biochemical oxygen demand and moderate chemical oxygen demand. Phenol levels are below the permit limits. However, this concentration will not meet the proposed limit. Total phenol (EPA Method 420) and phenol (EPA Method 604) concentrations suggest that most of the phenols are nontoxic. These are usually phenoxy compounds found in soaps or cleaning compounds. Shop personnel throughout the base maintain that paint stripping chemicals (i.e., methylene chloride and phenol) are not discharged to the sanitary sewer. However, levels found in the wastewater flowing off-base and in several oil/water separators suggest strippers are being rinsed off and allowed to enter the shop drains in significant quantities. Wastewater from sites 26 and 32 contains significant amounts of methylene chloride. Wastewater from sites 8, 33, and 47 contains lower levels.
- Oil and grease concentrations at site 1 are below the permit limits but are significant. Total extractable petroleum hydrocarbons account for 22 percent of the oil and grease total. This implies the oil and grease waste is domestic (cooking grease). Wastewater from sites 6, 10, 12, and 24 contains large amounts of oil and grease. Wastewater from sites 33, 35, 39, 54, 55, 56, and 57 contains lower levels. It is likely the levels vary with the dining facility clean-up schedules. These samples are representative of "after breakfast (0800 0900)" sewage. Significant amounts of several phthalates are present in the wastewater. Phthalates are plastisizers that can leach from our plastic Tygon tubing used to take samples or from plastic pipe used in sewers and water lines.
- B. As mentioned, comparison of phenols by EPA Methods 420 and 604 indicates that the phenols, in most cases, are not chlorinated (as toxic). Chlorinated phenols are typically used in industrial applications. Nonchlorinated phenols (C6H6O), are common ingredients in paint strippers, commercial cleansers and disinfectants. EPA Method 420 detects both chlorinated phenols as well as substituted phenols (such as nonyl phenol ethoxylate which is used as a nonionic surfactant). Analytical results show nonchlorinated substituted phenol levels are significantly higher than

chlorinated toxic phenol levels. A comparison of the EPA Method 420 and EPA Method 604 results which exceeded the proposed limit of 25  $\mu g/L$  is presented in Table 7. Complete phenol results are tabulated in Appendix G.

EPA Method 604 is not a complete analysis of all chlorinated phenols. However, the method does detect those considered priority pollutant chlorinated phenols. Davis-Monthan AFB apparently has limited the use and subsequent disposal of these types of chlorinated phenols. The increased levels of phenol detected by EPA Method 420 are presumed attributable to commercially available compounds containing phenols and organic compounds containing the phenoxy radical such as surfactants and disinfectants and compounds interfering with the EPA Method 420.

Table 7. Phenol Results by Method

|             | PHENOL COM        | CENTRATION        |      | PHENOL CONC       | ENTRATION         |
|-------------|-------------------|-------------------|------|-------------------|-------------------|
| SITE        | EPA 420<br>(μg/L) | EPA 604<br>(μg/L) | SITE | EPA 420<br>(µg/L) | EPA 604<br>(µg/L) |
|             |                   |                   |      |                   |                   |
| 1           | 29.4              | 8.2               | 34   | 380               | NR                |
| 2           | 43.7              | 15                | 35   | 157               | NR                |
| 2<br>3<br>4 | 55                | 29                | 37   | 112               | NR                |
|             | 74                | 20                | 39   | 105               | NR                |
| 6           | 40                | 33                | 40   | 79                | 7                 |
| 7<br>8      | 30                | 13                | 41   | 26                | 5.9               |
| 8           | 59                | NR                | 42   | 40.8              | 5                 |
| 9           | 37                | NR                | 43   | 38                | 20                |
| 12          | 1150              | NR                | 44   | 34                | 20                |
| 14          | 28                | NR                | 45   | 44                | 8                 |
| 15          | 183               | NR                | 46   | 70                | NR                |
| 17          | 27.7              | 26                | 47   | 725               | NR                |
| 19          | 100               | NR                | 48   | 35                | NR                |
| 20          | 50                | NR                | 52   | 580               | 170               |
| 23          | 105               | NR                | 53   | 30                | NR                |
| 24          | 820               | NR                | 54   | 870               | NR                |
| 25          | 91                | NR                | 55   | 2550              | NR                |
| 26          | 510               | NR                | 56   | 40                | NR                |
| 27          | 50                | NR                | 57   | 227               | NR                |
| 32          | 243               | NR                | 58   | 109               | NR                |
| 33          | 42                | NR                | 59   | 105               | NR                |
|             | · <del></del>     | ****              | 60   | 177               | NR                |
|             |                   |                   | 00   | 111               | 1411              |

NR = Not reported, no sample analyzed

Phenol concentrations, analyzed by EPA Method 420, at manholes 115, 376 and 342 (sites 16, 42, 50) met existing pretreatment limits. However, the hospital area (manhole 376) would not meet the proposed reduced limit without pretreatment.

"Apparent" phenol use is widespread. In fact, the wastewater from 43 of 60 sites exceeded the proposed limit (if EPA Method 420 is utilized). High phenol concentrations seem to correlate with washing and parts cleaning and stripping operations locations. The highest phenol concentrations are found in the effluents from the oil/water separators connected to parts cleaning facilities such as AMARC (building 7340), GLCM (building 73), AMARC NDI, and Transportation Fire Truck Maintenance (building 4823).

C. Toxic organic compounds such as methylene chloride and 1,3- and 1,4-Dichlorobenzene are discharged to the sanitary sewer in significant quantities. Discharge points that need to be included in the pretreatment system are presented in Table 8. Most toxic organic discharges are associated with parts cleaning operations (propulsion shops) and paint stripping operations (corrosion control shops). A limit for toxic organic discharges has not been enacted as yet. One method of banning the discharge of any toxic organic compounds, is being considered. Federal pretreatment discharge regulations (40 CFR 400) apply which limit the discharge of total toxic organics (TTO) to 2.13 mg/L. Although complete TTO analysis was not performed at every oil/ water separator, indications are that discharge from the separators meet this standard.

Table 8. Candidates for Connection to Industrial Pretreatment System

|         | RELATIVE | · · · · · · · · · · · · · · · · · · · | REASON FOR    | CONNECTION  |              |
|---------|----------|---------------------------------------|---------------|-------------|--------------|
| SITE    | FLOW     | HIGH PHENOL                           | HIGH ORGANICS | HIGH METALS | OIL & GREASE |
|         |          |                                       |               |             |              |
| FLIGHT  |          |                                       |               |             |              |
| 14      | М        | х                                     | X             |             |              |
| 23      | М        | Х                                     |               |             |              |
| 24      | M        | X                                     |               |             | X            |
| 25      | L        | X                                     | x             |             |              |
| 26      | H        | X                                     | x             | x           |              |
| 27      | M        | x                                     | X             |             |              |
| 32      | Н        | x                                     | X             |             |              |
| 33      | L        | x                                     | X             |             |              |
| 34      | М        | x                                     |               | x           | x            |
| 35      | L        | х                                     | x             |             | x            |
| 37      | L        | X                                     |               |             |              |
| 39      | L        | X                                     | X             |             | x            |
| 40      | Н        | x                                     |               |             |              |
| HOSPITA | \L       |                                       |               |             |              |
| 42      | Н        | x                                     |               |             |              |
| AMARC   |          |                                       |               |             |              |
| 53      | L        | x                                     | x             |             |              |
| 54      | M        | x                                     |               | x           | x            |
| 55      | M        | x                                     | x             | x           | x            |
| 56      | H        | X                                     | x             | x           | x            |
| 57      | M        | x                                     | ^             | x           | x            |
| 58      | L        | x                                     |               | ^           | x            |
| 59      | Ĺ        | x                                     |               |             | ^            |
|         | _        | ••                                    |               |             |              |
|         |          |                                       |               |             |              |

- D. Regulated toxic metals concentrations are below the permit limits at the three Pima County monitoring points. However, several point sources exceed the limits for cadmium, zinc, and lead. Further, the zinc level exceeds the Federal standards for characteristic hazardous waste (40 CFR 260) in the effluent from the oil/water separator connected to 355 AGS Propulsion Branch (building 5245). Federal pretreatment discharge regulations (40 CFR 400) also limit metals discharge for several industrial operations. The results of the bench scale laboratory analyses confirmed reduction of metal concentrations below the limit could be achieved by alum or sodium hydroxide addition.
- E. Several industrial shop oil/water separators from the flight line and AMARC, as well as the hospital should be connected to a pretreatment system to ensure future compliance with the Pima County Discharge Permit. The following shop oil/water separators are chosen to be connected to the separate industrial lines because of high phenol, organics, or metals concentrations. Determining actual flow rates from each shop requires additional study due to the need of monitoring water use over periods longer than this survey. However, subjective flow rates (high, medium, low) from observations are included in Table 8. The overall flows from the flight line, AMARC, and the hospital were 176,000 GPD, 125,000 GPD, and 36,000 GPD, respectively. An estimated 30% of these combined flows represent industrial operations from the flight line and AMARC.
- F. PD-680 usage has been almost eliminated by using Rinsolve 140 rather than PD-680 in degreasing tanks. This saves on hazardous waste disposal costs, as waste PD-680 sometimes fails characteristic hazardous waste tests for ignitability. Rinsolve discharge to the sanitary sewer may add to the apparent phenol concentrations if EPA Method 420 is used. The solvent contains 5.4% (54,000 mg/L) aromatics, benzene and is heavier in molecular weight. Benzene rings may register as phenols using this method. In analytical tests performed by AFOEHL/SA on the product, the undiluted solvent resulted in concentrations off scale. Diluting in aqueous solution (Rinsolve is essentially unsoluble) resulted in concentrations in the 100 to 300 mg/L range, most probably around 120 mg/L in rinsewater (Appendix J).
- G. The Hazardous Waste Specialist is responsible for training shop supervisors and accumulation site managers, who, in turn train shop personnel. The training course is given annually as required by RCRA.
- H. The 355 EMS shops utilize the service of a local linen contractor for cleaning dirty rags. This saves the base the cost of disposing the rags as hazardous waste.
- I. It does not seem possible to significantly reduce the quantity of hazardous waste generated at AMARC. The AMARC industrial facilities do not generate large quantities of hazardous waste on a frequent basis. The majority of the hazardous waste is generated during chemical tank cleaning procedures. These chemical tanks are typically changed out every five to seven years.

#### V. RECOMMENDATIONS

- A. Several separators contain evidence of paint stripping wastes, containing high phenol concentrations, methylene chloride and metals. Chemical stripping should be replaced with other abrasion methods, such as plastic media bead blasting or better sodium carbonate blasting. Tests indicate the contents of these separators should be disposed of as characteristic hazardous waste. The contents of the 355 CRS Propulsion Branch (building 5245) oil/water separator should be disposed of as hazardous waste.
- B. Davis-Monthan AFB should continue petitioning regulators to accept and use EPA Method 604 in place of EPA Method 420 for reporting phenol levels. The base would meet current and proposed limits if EPA Method 604 could be used.
- C. Until a pretreatment system is constructed, soaps and cleaners widely used on base should be analyzed by EPA Method 420. Those containing high levels of phenol (phenoxyl, nonyl) should be replaced by nonphenol soaps.
- D. The use of "paste" on the AMARC small parts cleaning washrack should be reconsidered. Paste is a made-in-house mixture of soap and discarded solvent. Although the mixture is not a hazardous waste, it adds to the wastewater's phenol levels.
- E. The Davis-Monthan AFB pretreatment plant which was designed to treat industrial wastes from selected shops on the flight line, AMARC, and the hospital needs to have the ability to remove TTO and metals as well as reducing phenols.
- F. 23 CAMS Corrosion Control should consider using an alternate stripping method such as sodium bicarbonate blasting or plastic media blasting. Either of these stripping methods should reduce the amount of hazardous waste generated by the shop and would also eliminate the need for the hot paint stripping tanks.
- G. All shops that use Speedy Dry should consider using an alternate absorbent material such as one that is siliceous-based. This type absorbent material reduces clean-up time, requires less absorbent and reduces quantity of waste generated.
- H. DRMO should be contacted to determine if it is possible to find a local contractor who will accept wet lead-acid batteries. This would eliminate the need for neutralizing, sampling, analyzing, and disposing the spent electrolyte.
- I. All shops on base should consider the possibility of establishing a contract with the local linen contractor for supplying cleaning rags. This option may not be feasible in all situations but may prove to be beneficial in others.
- J. The Hazardous Waste Specialist should ensure that all accumulation site and waste oil storage area primary and alternate managers receive hazardous waste training before assuming the position.

- K. The used paint filters at 836 TRANS Allied Trades, 836 CSG Auto Hobby, and 41 ECS Corrosion Control should be analyzed to determine whether or not they are hazardous. If they prove to be nonhazardous, the filters can continue to be disposed as municipal waste.
- L. Rinsolve should not be washed into the sanitary sewer system as it contributed to the apparent phenolic concentrations when EPA method 420 was used.

#### REFERENCES

- 1. Brown, Lester P. Brigadier General, Letter to Subordinate Organizations, Davis Monthan AFB AZ, (30 October 1986).
- 2. Roudebush, John, Brulin & Company, Inc., Letter to Major Lurker, Indianapolis IN, (16 Oct 1985).
- 3. Leanord, B.F., E.I. du Pont de Nemours & Co., Letter to Mark Grushka, Willmington DE (22 July 1986).
- 4. CWC-HDR, Inc., Deficiency Analysis Report For Wastewater Characterization Study and Final Design Material for Project No. DMT 37-0143, Wastewater Treatment System, Irvine CA, (November 1988).
- 5. APHA, Standard Methods for the Examination of Water and Wastewater, 16th Ed., American Public Health Association, Washington DC, (1985).
- 6. USEPA, Methods for Chemical Analysis of Water and Wastewater, EPA-600/4-79-020, March 1983.

APPENDIX A
CHEMICAL WASTE DISPOSAL FORM

(This page left blank)

# PLEASE HAVE THIS FORM READY FOR PICKUP BY:

| SHOP:                                                                                |                   | BLDG:                   |             |
|--------------------------------------------------------------------------------------|-------------------|-------------------------|-------------|
| CONTACT:                                                                             |                   | AUTOVO                  | N:          |
| Please fill out this form<br>possible. If you have any<br>call Lt Hedgecock at X5369 | y questions on fi |                         |             |
| Examples:                                                                            | Tank<br>Capacity  | Change Out<br>Frequency |             |
| PD-680 used in tank                                                                  | 60 gal            | 4/year                  | 55-gal drum |
| Comments: 1/2 gal of MEK process for parts cleaning                                  |                   |                         | on/wipe off |
| <del></del>                                                                          |                   | te Dispos               | al Method   |
| Brake Fluid                                                                          | 6 gal             | plac                    | ed in       |
| Transmission Fluid                                                                   | 10 gal            | same                    | 600-gal     |
| Hydraulic Fluid                                                                      | 3 gal             | bows                    | <br>er      |
| Motor Oil                                                                            | 50 gal            | 500-ga                  | l UGT       |
| Synthetic Oil                                                                        | 8 gal             | 55-gal                  | drum        |

|    | <b>TIONS:</b> If qu<br>de it. | nestion does not apply to this shop put "N/A" |
|----|-------------------------------|-----------------------------------------------|
| 1. | Does this sho                 | op have any underground storage tanks?        |
|    | If yes:                       | How many?                                     |
|    |                               | Capacity?                                     |
|    |                               | What is stored in the tank?                   |
|    |                               |                                               |
|    |                               | How often is it cleaned out?                  |
|    |                               | Has it ever been leak-tested?                 |
|    |                               | drains of the shop lead to an oil/water       |
|    |                               | How often is it cleaned out?                  |
| 3. | Does the shop                 | have any Safety Kleen units?                  |
|    | If yes:                       | How many?                                     |
|    |                               | Tank capacity?                                |
|    |                               | How often are they serviced?                  |
| 4. | What does the                 | shop do with dirty rags?                      |
| 5. | What does the                 | e shop do with used "Speedy Dry"?             |
| 6. | Describe shop                 | p activities and responsibilities below:      |

# PAINT WASTE AND THINNERS

| PAINTS | s<br>      | Amount of Wa<br>generated/mo |               |                   | 1        | isposa<br>Method |                    |
|--------|------------|------------------------------|---------------|-------------------|----------|------------------|--------------------|
| Latex  |            |                              |               |                   |          |                  |                    |
| Polyui | rathane    |                              |               |                   |          |                  |                    |
| Ename] | l<br>      |                              |               |                   |          |                  |                    |
| Other  |            |                              |               |                   |          |                  |                    |
| Commer |            |                              |               |                   |          |                  |                    |
|        |            |                              |               |                   |          |                  |                    |
|        | ERS (list  |                              |               |                   |          |                  |                    |
|        |            |                              |               |                   |          |                  |                    |
|        |            |                              |               |                   |          |                  |                    |
| Commer | nts        |                              |               |                   |          |                  |                    |
|        |            |                              |               |                   |          |                  |                    |
| STRIP  |            |                              |               |                   |          |                  |                    |
| Name o | of Strippe | r National<br>Stock #        | Amount<br>per | of Waste<br>Month | OR Ta    | ank<br>ize       | Change<br>Out Freg |
|        |            |                              |               |                   | <b>-</b> |                  |                    |
|        |            |                              |               |                   |          |                  |                    |
|        |            |                              |               |                   |          |                  |                    |

| Comm | ent    | s       |              |      |       |        |          |                        |          |   |
|------|--------|---------|--------------|------|-------|--------|----------|------------------------|----------|---|
|      |        |         |              |      |       |        |          |                        |          | _ |
|      |        |         |              |      |       |        |          |                        |          | - |
|      |        |         |              |      |       |        |          |                        |          | _ |
|      |        |         | <del> </del> |      |       |        |          |                        |          | _ |
| ACID | )S<br> |         |              |      |       |        |          |                        |          | _ |
| Name |        |         | Mar          |      |       | genera |          | te Meth<br>th Disp     |          | _ |
|      |        | <b></b> |              |      |       |        |          |                        |          | _ |
|      |        |         | <b></b> -    |      |       |        |          |                        |          | - |
| Comm | ent:   | s       |              |      |       |        |          |                        |          | - |
| ВАТТ | ERI    | ES      |              |      |       |        |          |                        |          | - |
| Туре | of     | Batte   | ery          | #/Mc | nth   |        |          | alized in<br>ned in We |          | • |
|      |        |         |              |      |       |        |          |                        |          | - |
|      |        |         |              |      |       |        |          |                        |          | - |
| Comm | ent    | 5:<br>  | <del>-</del> |      |       |        |          |                        |          | _ |
|      |        |         |              |      |       |        |          |                        |          | _ |
|      |        | LEANER  |              |      |       |        |          |                        |          |   |
|      |        | Soap    | Dilut        | ion  | Ratio |        | . Stock# | Amt Used / month       | Disposal |   |
|      |        | <b></b> |              |      |       |        | ·        |                        |          |   |
|      |        |         |              |      |       |        |          |                        |          | - |
| Comm | ents   | 5       |              |      |       |        |          |                        |          |   |
|      |        |         |              |      |       |        |          |                        |          |   |
| OILS | ANI    | FLUI    | DS           |      |       |        |          |                        |          |   |

| Brake Fluid           |            |        |        |                        |                       |
|-----------------------|------------|--------|--------|------------------------|-----------------------|
| Transmission Fluid    |            |        |        |                        |                       |
| Hydraulic Fluid       |            |        |        |                        |                       |
| Motor Oil             |            |        |        |                        |                       |
| Synthetic Oil         |            |        |        |                        |                       |
| Other                 |            |        |        |                        |                       |
| Comments              |            |        |        |                        |                       |
| SOLVENTS/DEGREASANTS  |            |        |        |                        |                       |
| Name of Chemical      | Amt. of Wa | ste OR | Tank   | Change                 | Disposal<br>Method    |
| Carbon Remover        |            |        |        |                        |                       |
| PD-680 used in tank   |            |        |        |                        |                       |
| Pd-680 used on washra |            |        |        |                        |                       |
| Other:                |            |        |        |                        |                       |
|                       | ~          |        |        |                        |                       |
| Comments              | ~          |        |        |                        |                       |
| PHOTO CHEMICALS       |            |        |        |                        |                       |
| Name of Chemical Ma   | nufacturer | Amt/mo | OR Tai | nk Change<br>ze Out fr | Disposal<br>eq Method |
|                       |            |        |        |                        |                       |
|                       |            |        |        |                        |                       |
|                       |            |        |        |                        |                       |

|         |       |          |               |                     |              | . — — — — — — — —  |                    |
|---------|-------|----------|---------------|---------------------|--------------|--------------------|--------------------|
|         |       |          |               |                     |              |                    |                    |
|         |       |          | essed through |                     | ecover       | y unit be          | efore              |
|         |       | nicals   |               |                     |              |                    |                    |
| Nam     | e of  | Chemical | Manufacturer  | National<br>Stock # | Tank<br>Size | Change<br>Out Freq | Disposal<br>Method |
|         | lsifi |          |               |                     |              |                    |                    |
| <br>Dye | Pene  | etrant   |               |                     |              |                    |                    |
|         | elope | er       |               |                     |              |                    |                    |
|         | ments | 5        |               |                     |              |                    |                    |
| FUE     | LS    |          |               |                     |              |                    |                    |
|         |       | Fuel     | Amount/Mo     | onth                |              | Disposal           |                    |
|         |       |          |               |                     |              |                    |                    |
|         |       |          |               |                     |              |                    |                    |
| ANI     | IFRE  | EZE      |               |                     |              |                    |                    |
|         |       |          | Amount/Mo     | onth                |              | Disposal           | Method             |
|         |       |          |               |                     |              |                    |                    |

| OTHER    | R CI | HEMICALS | (Please list a | ny chemica          | ls that      | t contain          | phenols)           |
|----------|------|----------|----------------|---------------------|--------------|--------------------|--------------------|
| <br>Name | of   | Chemical | Manufacturer   | National<br>Stock # | Tank<br>Size | Change<br>Out Freq | Disposal<br>Method |

Signature of person filling out this form\_\_\_\_\_

(This page left blank)

## APPENDIX B

SUMMARY OF WASTE DISPOSAL PRACTICES FOR EACH WASTE CATEGORY

(This page left blank)

# SUMMARY OF WASTE DISPOSAL PRACTICES FOR EACH WASTE CATEGORY

WASTE: Oils and Fluids

| SHOP                          | WASTE           | QTY(GAL/YR) | DISPOSAL |
|-------------------------------|-----------------|-------------|----------|
| 23 CAMS Engine                | Synthetic Oil   | 48          | DNH      |
| 868 TMMS Vehicle Maintenance  | Trans Fluid     | 125         | DNH      |
| 41 ECS Hydraulic              | Hydraulic Fluid | 24          | DNH      |
| 41 ECS Propulsion             | Hydraulic Fluid | 330         | DNH      |
| 868 TMMS Corrosion Control    | Oil and Fluid   | 440         | DNH      |
| 836 Auto Hobby                | Motor Oil       | 3000        | DNH      |
| 836 TRANS Gen/Spec Purp Maint | Motor Oil       | 7200        | DNH      |
| 868 TMMS Vehicle Maintenance  | Engine Oil      | 2100        | UGT      |
| 23 CAMS Phase Dock            | Synthetic Oil   | 240         | DNH      |
| 355 EMS AGE                   | Synthetic Oil   | 660         | DNH      |
| 355 AGS AMU                   | Hydraulic Fluid | 660         | DNH      |
| 41 ECS Propulsion             | Engine Oil      | 1320        | DNH      |
| 355 AGS AMU                   | Synthetic Oil   | 660         | DNH      |
| 41 ECS Aircraft Maint         | Hydraulic Fluid | 12          | DNH      |
| 836 TRANS Gen/Spec Purp Maint | Trans Fluid     | 100         | DMH      |
| 836 CES Power Production      | Hydraulic Fluid | 50          | DNH      |
| 41 ECS Aircraft Maint         | Engine Oil      | 180         | DN H     |
| 41 ECS AGE                    | Hydraulic Fluid | 660         | DNH      |
| 868 TMMS AGE                  | 7808 Oil        | 240         | DNH      |
| AMARC Pneudraulics            | Hydraulic Fluid | 440         | DNH      |
| 868 TMMS AGE                  | Motor Oil       | 220         | DNH      |
| AMARC Materials Lab           | Hydraulic Fluid | 360         | DH       |
| 41 ECS Aircraft Maint         | Turbine Oil     | 24          | DNH      |
| 41 ECS AGE                    | Synthetic Oil   | 660         | DNH      |
| 41 ECS Electric               | Engine Oil      | 2           | DNH      |
| 836 CES Power Production      | Motor Oil       | 150         | DNH      |
| 355 CRS Pneudraulics          | Hydraulic Fluid | 36          | DNH      |
| 836 TRANS Fire Truck Maint    | Motor Oil       | 660         | DNH      |
| 23 CAMS Phase Dock            | Hydraulic Fluid | 250         | DNH      |
| 41 ECS AGE                    | Motor Oil       | 660         | DNH      |
| AMARC Materials Lab           | Engine Oil      | 360         | DNH      |
| 355 EMS AGE                   | Hydraulic Fluid | 660         | DNH      |

TOTAL: 22531

WASTE: Safety Kleen

| SHOP                             | WASTE                           | QTY(GAL/YR) | DISPOSAL   |
|----------------------------------|---------------------------------|-------------|------------|
| 836 Auto Hobby<br>836 Auto Hobby | Carburetor Clnr<br>Safety Kleen | 480<br>480  | SBC<br>SBC |
| 868 TMMS Vehicle Maintenance     | Safety Kleen                    | 180         | SBC        |

WASTE: Paint, Thinner, and Stripper

| SHOP                       | WASTE               | QTY (GAL/YR) | DISPOSAL |
|----------------------------|---------------------|--------------|----------|
| AMARC Corrosion/Paint      | Paint Waste         | 220          | DH       |
| 355 EMS Armament           | Spray Paint         | NQ           | UIP      |
| 41 ECS Corrosion Contro    | Poly & Enamel Paint | 96           | DH       |
| 836 Auto Hobby             | Paint Filters       | 240*         | T        |
| 836 TRANS Allied Trades    | Paint Filters       | NQ           | T        |
| AMARC Small Parts Cleaning | Bead Blast Media    | NQ           | T        |
| 836 TRANS Fire Truck Maint | Spray Paint         | NQ           | UIP      |
| 355 CRS Propulsion         | Rinsewater          | 660          | OWS      |
| 868 TMMS Corrosion Control | Paint Wastes        | 30           | DH       |
| 836 CES Power Production   | Paint Thinner       | NQ           | UIP      |
| 41 ECS Corrosion Control   | Paint Filters       | 432*         | T        |
| 355 CRS Propulsion         | Paint Stripper      | 660          | DNH      |
| AMARC Small Parts Cleaning | Paint Stripper      | 700          | DH       |
| 41 ECS Corrosion Control   | Thinners            | 60           | DH       |
| 836 CES Power Production   | Spray Paint         | NQ           | UIP      |
| 23 CAMS Corrosion Control  | Paints and Thinners | 7080         | DH       |
| 23 CAMS Corrosion Control  | Stripper            | 880          | DH       |

WASTE: Fuel

| WASTE       | QTY(GAL/YR)                                   | DISPOSAL                                                                                                                                                            |
|-------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JP-4        | 1200                                          | REC                                                                                                                                                                 |
| JP-4        | NQ                                            | FTP                                                                                                                                                                 |
| Fuel Sludge | 275                                           | DNH                                                                                                                                                                 |
| JP-4        | 330                                           | DNH                                                                                                                                                                 |
| Diesel      | 240                                           | DNH                                                                                                                                                                 |
| JP-4        | 120                                           | DNH                                                                                                                                                                 |
| Diesel      | 150                                           | DNH                                                                                                                                                                 |
| JP-4        | 36                                            | DNH                                                                                                                                                                 |
|             | JP-4 JP-4 Fuel Sludge JP-4 Diesel JP-4 Diesel | JP-4       1200         JP-4       NQ         Fuel Sludge       275         JP-4       330         Diesel       240         JP-4       120         Diesel       150 |

TOTAL: 2351

WASTE: Antifreeze

| SHOP                       | WASTE      | QTY(GAL/YR) | DISPOSAL |
|----------------------------|------------|-------------|----------|
| 836 CSG Auto Hobby         | Antifreeze | 120         | DD       |
| 836 TRANS Fire Truck Maint | Antifreeze | 60          | DD       |
|                            |            |             |          |

<sup>\*</sup> Not included in quantity of waste per year

WASTE: Soap

| SHOP                          | WASTE             | QTY (GAL/YR) | DISPOSAL |
|-------------------------------|-------------------|--------------|----------|
| AMARC Small Parts Cleaning    | Soap              | NQ           | ows      |
| 41 ECS Fuel System Repair     | Soap              | NQ           | OWS      |
| 41 ECS Corrosion Control      | Soap              | 4800         | OWS      |
| 23 CAMS Corrosion Control     | Aircraft Soap     | NQ           | OWS      |
| 868 TMMS Vehicle Maintenance  | Biogenic Soap     | 110          | OWS      |
| 355 EMS Armament              | LA 175 Soap       | 220          | OWS      |
| 41 ECS Propulsion             | Bio-Franklin Soap | NQ           | UIP      |
| 836 TRANS Gen/Spec Purp Maint | Steam-It Soap     | NQ           | OWS      |
| 836 Auto Hobby                | Albrite Soap      | 30           | OWS      |
| 836 Auto Hobby                | Roughneck Soap    | 36           | OWS      |
| 41 ECS AGE                    | Aircraft Soap     | 660          | OWS      |

WASTE: Speedy Dry

| SHOP                      | WASTE      | DISPOSAL |  |
|---------------------------|------------|----------|--|
| 41 ECS Electric           | Speedy Dry | Ť        |  |
| 41 ECS AGE                | Speedy Dry | T        |  |
| 23 CAMS Phase Dock        | Speedy Dry | T        |  |
| 355 EMS AGE               | Speedy Dry | T        |  |
| 41 ECS Fuel System Repair | Speedy Dry | T        |  |
| 868 TMMS AGE              | Speedy Dry | T        |  |
| 41 ECS Aircraft Maint     | Speedy Dry | Т        |  |

# WASTE: Batteries

| SHOP                          | WASTE     | QTY(#/YR) | DISPOSAL |
|-------------------------------|-----------|-----------|----------|
| 41 ECS AGE                    | Batteries | 36        | NDD      |
| 868 TMMS AGE                  | Batteries | 6         | NDD      |
| 836 TRANS Gen/Spec Purp Maint | Batteries | NQ        | NDD      |

WASTE: Rags

| SHOP                          | WASTE | DISPOSAL |  |
|-------------------------------|-------|----------|--|
| 41 ECS Hydraulic              | Rags  | Т        |  |
| 355 EMS AGE                   | Rags  | SBC      |  |
| 41 ECS Corrosion Control      | Rags  | T        |  |
| 336 TRANS Fire Truck Maint    | Rags  | T        |  |
| 355 EMS Wheel and Tire        | Rags  | SBC      |  |
| 355 CRS Pneudraulics          | Rags  | T        |  |
| 336 CES Power Production      | Rags  | T        |  |
| 23 CAMS Phase Dock            | Rags  | T        |  |
| H ECS Electric                | Rags  | T        |  |
| MMARC Pneudraulics            | Rags  | T        |  |
| 55 EMS Armament               | Rags  | SBC      |  |
| 11 ECS Fuel System Repair     | Rays  | T        |  |
| II ECS Aircraft Maint         | Rags  | T        |  |
| 368 TMMS AGE                  | Rags  | T        |  |
| 3 CAMS Engine                 | Rags  | τ        |  |
| 11 ECS Propulsion             | Rags  | Т        |  |
| 55 EMS NDI                    | Rags  | SBC      |  |
| 336 TRANS Gen/Spec Purp Maint | Rags  | T        |  |
| HI ECS AGE                    | Rags  | T        |  |

WASTE: Photo & NDI

| SHOP                   | WASTE             | QTY(GAL/YR) | DISPOSAL |
|------------------------|-------------------|-------------|----------|
| 355 EMS NDI            | Dye Penetrant     | 110         | DH       |
| AMARC NDI              | Penetrant         | 55          | DH       |
| 836 HOSP Dental Clinic | X-Ray Fixer       | 24          | SRDD     |
| 355 EMS NDI            | X-Ray Fixer       | 600         | SRDD     |
| 355 EMS NDI            | Emulsifier        | 110         | DD       |
| 355 EMS NDI            | Developer         | 110         | DD       |
| AMARC NDI              | Emulsifier        | 55          | DH       |
| 836 HOSP Dental Clinic | X-Ray Developer   | 24          | DD       |
| AMARC NDI              | Developer         | 55          | DH       |
| 355 EMS NDI            | X-Ray Developer   | 600         | DD       |
| AMARC NDI              | Mag Particle Soln | 30          | DH       |
| 355 EMS NDI            | Mag Particle Soln | 40          | DH       |

WASTE: Solvent

| SHOP                          | WASTE             | QTY(GAL/YR) | YR) DISPOSAL |  |
|-------------------------------|-------------------|-------------|--------------|--|
| 355 EMS NDI                   | TCA               | 100         | DH           |  |
| 41 ECS Propulsion             | MEK               | NQ          | ULP          |  |
| 355 EMS AGE                   | Rinsolve 140      | 110         | DNH          |  |
| 836 TRANS Gen/Spec Purp Maint | Rinsolve 140      | 300         | DNH          |  |
| 41 ECS Propulsion             | Toluene           | NQ          | UIP          |  |
| 41 ECS Hydraulic              | Rinsolve 140      | 320         | DNH          |  |
| 355 CRS Propulsion            | Carbon Remover    | 660         | DH           |  |
| 355 EMS Wheel and Tire        | TCA               | NQ          | ЧIU          |  |
| AMARC Materials Lab           | Freon             | 60          | DH           |  |
| 41 ECS AGE                    | Rinsolve 140      | NQ          | DNH          |  |
| 355 AGS AMU                   | Citrikleen        | NQ          | Q1D          |  |
| AMARC Small Parts Cleaning    | Carbon Remover    | 700         | DH           |  |
| 336 HOSP Clinical Lab         | Xylene            | 36          | DH           |  |
| II ECS AGE                    | PD-680            | 48          | DH           |  |
| AMARC Materials Lab           | Nitric Acid       | 1           | UIP          |  |
| 11 ECS Aircraft Maint         | PD-680            | 30          | DH           |  |
| MARC Small Parts Cleaning     | Phosphoric Acid   | 5           | DH           |  |
| 11 ECS Propulsion             | PD-680            | 1 38        | DH           |  |
| AMARC Materials Lab           | Hydrochloric Acid | 12          | UIP          |  |
| 355 CRS Pneudraulics          | Rinsolve 140      | 640         | DNH          |  |
| AMARC Small Parts Cleaning    | Rinsolve 140      | NQ          | OWS          |  |
| 355 EMS Wheel and Tire        | Rinsolve 140      | 300         | DNH          |  |
| 355 CRS Propulsion            | Rinsolve 140      | 660         | DNH          |  |
| 41 ECS Fuel System Repair     | MEK               | NQ          | qID          |  |
| AMARC Pneudraulics            | Rinsolve 140      | 165         | DNH          |  |
| 23 CAMS Engine                | Rinsolve 140      | NQ          | DNH          |  |
| AMARC Small Parts Cleaning    | NaOH              | NQ          | REP          |  |
| 336 HOSP Clinical Lab         | Alcohol           | 25          | DD           |  |
| 41 ECS Electric               | MEK               | 12          | UIP          |  |
| AMARC Small Parts Cleaning    | TCA               | NQ          | REP          |  |

WASTE: Misc Chemicals

| SHOP                                               | WASTE                               | QTY(GAL/YR)     | DISPOSAL          |
|----------------------------------------------------|-------------------------------------|-----------------|-------------------|
| 836 HOSP Dental Clinic                             | Acetone                             | NQ              | UIP               |
| 836 HOSP Dental Clinic                             | Vapo-Steril                         | 24              | DD                |
| 836 HOSP Clinical Lab                              | Formalin                            | 200             | DD                |
| 836 HOSP Dental Clinic                             | Ultrasonic Cl                       | eaner 12        | DD                |
| 836 HOSP Dental Clinic                             | Dialdehyde                          | 120             | DD                |
| 836 HOSP Dental Clinic                             | Potassium Cya                       | nide NQ         | DD                |
| 41 ECS Electric                                    | Dibromoethane                       | 60              | UIP               |
| 836 HOSP Dental Clinic                             | Wax Solvent                         | 2               | DD                |
| 836 HOSP Dental Clinic                             | Chloroform                          | NQ              | UIP               |
| 836 HOSP Dental Clinic                             | Vacuucleaner                        | 480             | DD                |
| 836 CES Heating Plant                              | Phosphate                           | 2400            | DD                |
| 836 CES Refrigeration                              | Inhibitor                           | NQ              | DD                |
| 836 CES Refrigeration                              | Cooling Tower                       | Treat NQ        | DD                |
| 836 CES Heating Plant                              | Sodium Bisulf                       |                 | DD                |
| 836 CES Heating Plant                              | Sulfamic Acid                       | 1380            | NDD               |
| 41 ECS Electric                                    | Liquid Oxygen                       |                 | UIP               |
| 836 CES Heating Plant                              | Cyclohexylamir                      |                 | DD                |
|                                                    |                                     | TOTAL: 11878    |                   |
| LEGEND:<br>SEPARATOR                               | T - TRASH                           | ows -           | OIL/WATER         |
| Oli Alia Ion                                       | DD - DOWN DRAIN<br>DH - DRUMMED HAZ |                 | FIRE TRAINING PIT |
| REC - RECYCLED                                     | SBC - SERVICED BY                   | CONTRACTOR      | OOED IN LUCCESS   |
| REP - REPLENISHED                                  | NDD - NEUTRALIZED                   | THEN DOWN DRAIN |                   |
| UGT - UNDERGROUND TANK DNH - DRUMMED NON HAZ WASTE | SRDD - SILVER RECOV<br>DOWN DRAIN   | ERY THEN        |                   |

# APPENDIX C WASTES DISPOSED AS HAZARDOUS WASTE AT DAVIS-MONTHAN AFB

(This page left blank)

Type of Waste: Hydraulic Fluid

| SHOP                | BLDG | PRODUCT         | QTY (GAL/YR) |
|---------------------|------|-----------------|--------------|
| AMARC Materials Lab | 7615 | Hydraulic Fluid | 360          |
|                     |      |                 |              |
|                     |      | ΤΟTA            | L: 360       |

Type of Waste: Paint, Thinner, & Stripper

| SHOP                       | BLD # | PRODUCT QT          | Y (GAL/YR |
|----------------------------|-------|---------------------|-----------|
| AMARC Corrosion/Paint      | 7425  | Paint Waste         | 220       |
| 355 CRS Propulsion         | 5245  | Paint Stripper      | 660       |
| 41 ECS Corrosion Control   | 136   | Thinners            | 60        |
| 23 CAMS Corrosion Control  | 5255  | Paints and Thinners | 7080      |
| 41 ECS Corrosion Control   | 236   | Poly & Enamel Paint | 96        |
| 868 TMMS Corrosion Control | 72    | Paint Wastes        | 30        |
| 23 CAMS Corrosion Jontrol  | 5255  | Stripper            | 880       |
| AMARC Small Parts Cleaning | 7401  | Paint Stripper      | 770*      |

Type of Waste: NDI

| SHOP        | BLDG | PRODUCT (         | QTY (GAL/YR) |
|-------------|------|-------------------|--------------|
| AMARC NDI   | 7401 | Developer         | 55**         |
| 355 EMS NDI | 5406 | Mag Particle Soln | 40           |
| AMARC NDI   | 7401 | Penetrant         | 55**         |
| AMARC NDI   | 7401 | Mag Particle Soln | 30           |
| AMARC NDI   | 7401 | Emulsifier        | 55**         |
| 355 EMS NPI | 5406 | Dye Penetrant     | 110          |

Type of Waste: Solvent

| SHOP                       | BLDG | PRODUCT         | QTY (GAL/YR) |
|----------------------------|------|-----------------|--------------|
| AMARC Small Parts Cleaning | 7401 | Carbon Remover  | 700*         |
| AMARC Small Parts Cleaning | 7401 | Phosphoric Acid | 5            |
| 41 ECS Propulsion          | 133  | PD-680          | 1 38         |
| 836 HOSP Clinical Lab      | 400  | Xylene          | <b>3</b> 6   |
| 355 CRS Propulsion         | 5245 | Carbon Remover  | 660          |
| 41 ECS Aircraft Maint      | 139  | PD <b>-</b> 680 | 30           |
| 41 ECS AGE                 | 125  | PD-680          | 48           |
| AMARC Materials Lab        | 7615 | Freon           | 60           |
| 355 EMS NDI                | 5406 | 1,1,1-TCE       | 100          |

\* Changed out every 5 years \*\* Changed out every 7 years

## APPENDIX D

WASTES DISCHARGED TO THE SANITARY SEWER AT DAVIS-MONTHAN AFB

(This page left blank)

#### WASTES DISCHARGED TO THE SANITARY SEWER AT DAVIS-MONTHAN AFB

Type of Waste: Rinsewater

| SHOP               | BLDG | PRODUCT    | QTY (GAL/YR) |
|--------------------|------|------------|--------------|
| 355 CRS Propulsion | 5245 | Rinsewater | 660          |
|                    |      |            |              |

TOTAL: 660

Type of Waste: Antifreeze

| SHOP                                         | BLDG         | PRODUCT                  | QTY (GAL/YR) |
|----------------------------------------------|--------------|--------------------------|--------------|
| 836 TRANS Fire Truck Maint<br>836 Auto Hobby | 4823<br>4531 | Antifreeze<br>Antifreeze | 60<br>120    |
|                                              |              |                          |              |

TOTAL: 180

Type of Waste: Soap

| SHOP                          | BLDG. | PRODUCT        | QTY (GAL/YR) |
|-------------------------------|-------|----------------|--------------|
| 23 CAMS Corrosion Control     | 5255  | Aircraft Soap  | NQ           |
| 836 TRANS Gen/Spec Purp Maint | 4507  | Steam-It Soap  | ΝQ           |
| AMARC Small Parts Cleaning    | 7401  | Soap           | NQ           |
| 41 ECS AGE                    | 125   | Aircraft Soap  | 660          |
| 355 EMS Armament              | 4710  | LA 175 Soap    | 220          |
| 836 Auto Hobby                | 4531  | Albrite Soap   | 30           |
| 868 TMMS Vehicle Maintenance  | 72    | Biogenic Soap  | 110          |
| 836 Auto Hobby                | 4531  | Roughneck Soap | 36           |
| 41 ECS Fuel System Repair     | 136   | Soap           | MQ           |
| 41 ECS Corrosion Control      | 136   | Soap           | 4800         |

TOTAL: 5856

Type of Waste: Sulfuric Acid

| SHOP                          | BLDG | PRODUCT   | QTY (#/YR) |
|-------------------------------|------|-----------|------------|
| 868 TMMS AGE                  | 72   | Batteries | 6          |
| 41 ECS AGE                    | 125  | Batteries | 36         |
| 836 TRANS Gen/Spec Purp Maint | 4507 | Batteries | NQ         |

Type of Waste: Photo & NDI

| SHOP                   | BLDG | PRODUCT         | QTY (GAL/YR) |
|------------------------|------|-----------------|--------------|
| 355 EMS NDI            | 5406 | X-Ray Developer | 600          |
| 355 EMS NDI            | 5406 | X-Ray Fixer     | 600          |
| 355 EMS NDI            | 5406 | Developer       | 110          |
| 836 HOSP Dental Clinic | 400  | X-Ray Fixer     | 24           |
| 836 HOSP Dental Clinic | 400  | X-Ray Developer | 24           |
| 355 EMS NDI            | 506  | Emulsifier      | 110          |
|                        |      |                 |              |

TOTAL: 1468

Type of Waste: Solvent

| SHOP                                                | BLDG        | PRODUCT                 | QTY (GAL/YR) |
|-----------------------------------------------------|-------------|-------------------------|--------------|
| AMARC Small Parts Cleaning<br>836 HOSP Clinical Lab | 7401<br>400 | Rinsolve 140<br>Alcohol | NQ<br>25     |
|                                                     |             | <del></del>             |              |

TOTAL: 25

Type of Waste: Misc Chemicals

| QTY (C  | GAL/YR) |
|---------|---------|
|         | NQ      |
| r Treat | NQ      |
| fite 24 | 400     |
| 24      | 400     |
| anide   | NQ      |
|         | 2       |
| · 4     | 480     |
| leaner  | 12      |
| ine 24  | 100     |
|         | 200     |
| d 53    | 309     |
| -       | 120     |
| ·       | 24      |
|         | 1       |

APPENDIX E

MASTER LIST OF SHOPS

(This page left blank)

## MASTER LIST OF SHOPS

| SHOP                                                                                             | CONTACT                                                                                                       | BUILDING                                             | EXTENSION                                                    |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 823 CAMS                                                                                         |                                                                                                               |                                                      |                                                              |
| Engine Phase Dock Aircraft Maint Corrosion Control Fuel Systems                                  | MSgt Steel<br>TSgt Johnson<br>2Lt Banks<br>MSgt Koernig<br>MSgt Barnett                                       | 1358<br>1447<br>1541<br>5255<br>5256                 | 5275                                                         |
| 355 EMS                                                                                          |                                                                                                               |                                                      |                                                              |
| NDI<br>AGE<br>Armament<br>Wheel and Tire                                                         | TSgt Johnson<br>SMSgt Morris<br>MSgt Tilden<br>SrA Nalley                                                     | 5406<br>4127<br>4710<br>4809                         | 5352<br>4432                                                 |
| 836 TRANS                                                                                        |                                                                                                               |                                                      |                                                              |
| Gen & Spec Maint<br>Allied Trades<br>Fire Truck Maintenance                                      | Mr Moffitt<br>Mr Moffitt<br>Mr Scheets                                                                        | 4705<br>4705<br>4823                                 | 5394<br>4987<br>5001                                         |
| 823 CES                                                                                          |                                                                                                               |                                                      |                                                              |
| Refrigeration Power Production Entomology Liquid Fuels Heating Plant                             | TSgt Moore<br>MSgt Terry<br>TSgt Figueredo<br>Mr Rogalski<br>Mr Estrada                                       | 5309<br>5122<br>5319<br>5309<br>5309                 | 4694<br>4520<br>5368<br>4983<br>3139                         |
| 868 TMMS                                                                                         |                                                                                                               |                                                      |                                                              |
| AGE<br>Corrosion Control<br>Vehicle Maint                                                        | TSgt Walker<br>TSgt Korzenaski<br>TSgt Brown                                                                  | 72<br>72<br>72                                       | 3201<br>5199<br>4994                                         |
| 41 ECS                                                                                           |                                                                                                               |                                                      |                                                              |
| Fuel System Repair Hydraulic Isochronal Electric Propulsion Corrosion Control AGE Aircraft Maint | SAmn Winter Sgt Mundy SSgt Linkous TSgt Van Vranken TSgt Tiensvold MSgt Thunstrum SSgt Holyfield MSgt Bagwell | 136<br>136<br>136<br>129<br>133<br>136<br>125<br>139 | 4640<br>5847<br>5845<br>5878<br>5741<br>4151<br>3988<br>5995 |
| AMARC                                                                                            |                                                                                                               |                                                      |                                                              |
| Corrosion/Paint<br>Materials Lab<br>Pneudraulics<br>NDI<br>Small Parts Cleaning                  | Mr Wilson<br>Mr Stutz<br>Mr Berry<br>Mr Machado<br>Mr Gunderson                                               | 7425<br>7615<br>7415<br>7401<br>7401                 | 3263<br>3387<br>5636<br>3670<br>5402                         |

| 836 AD HOSP                    |                            |              |              |
|--------------------------------|----------------------------|--------------|--------------|
| Pathology Lab<br>Dental Clinic | Sgt Powell<br>MSgt Soufert | 400<br>400   | 4732<br>5005 |
| 355 CRS                        |                            |              |              |
| Pneudraulics<br>Propulsion     | TSgt Amick<br>MSgt South   | 5045<br>5245 | 4331<br>5376 |
| 836 CSG                        |                            |              |              |
| Auto Hobby                     | Mr Booker                  | 4531         | 3614         |
| 355 AGS                        |                            |              |              |
| AMU                            | MSgt Williams              | 5251         | 5025         |

## APPENDIX F DISPOSAL PRACTICES BY SHOP FOR DAVIS-MONTHAN AFB

(This page left blank)

### DISPOSAL PRACTICES BY SHOP FOR DAVIS-MONTHAN AFB

SHOP:

23 CAMS Corrosion Control

Building: 5255

| WASTE PRODUCT       | QTY(GAL/YR) | DISPOSAL |  |
|---------------------|-------------|----------|--|
| Stripper            | 880         | DH       |  |
| Aircraft Soap       | NQ          | OWS      |  |
| Paints and Thinners | 7080        | DH       |  |
| Paints and Thinners | 7080        | DH       |  |

TOTAL: 7960

SHOP: 23 CAMS Engine

Building: 1348

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |  |
|---------------|-------------|----------|--|
| Synthetic Oil | 48          | DNH      |  |
| Rinsolve 140  | NQ          | DNH      |  |
|               |             | DNII     |  |
| Rags          | NQ          | 1        |  |
|               |             |          |  |

TOTAL: 48

SHOP: 23 CAMS Fuel Systems

Building: 5256

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |
|---------------|-------------|----------|
| JP <b>-</b> 4 | 1200        | REC      |
|               |             |          |

TOTAL: 1200

SHOP:

23 CAMS Phase Dock

Building: 1447

| WASTE PRODUCT   | QTY(GAL/YR) | DISPOSAL |  |
|-----------------|-------------|----------|--|
| Rags            | NQ          | T        |  |
| Speedy Dry      | NQ          | T        |  |
| Synthetic Oil   | 240         | DNH      |  |
| Hydraulic Fluid | 250         | DNH      |  |

SHOP: 355 AGS AMU

Building: 5251

| WASTE PRODUCT                    | QTY(GAL/YR) | DISPOSAL     |  |
|----------------------------------|-------------|--------------|--|
| Hydraulic Fluid<br>Synthetic Oil | 660<br>660  | DN H<br>DN H |  |
| JP-4                             | NQ          | FTP          |  |
| Citrikleen                       | NQ          | UIP          |  |
|                                  |             |              |  |

TOTAL: 1320

SHOP: 355 CRS Pneudraulics

Building: 5045

| WASTE PRODUCT                             | QTY(GAL/YR)     | DISPOSAL        |  |
|-------------------------------------------|-----------------|-----------------|--|
| Rags<br>Hydraulic Fluid ·<br>Rinsolve 140 | NQ<br>36<br>640 | T<br>DNH<br>DNH |  |
|                                           |                 |                 |  |

TOTAL: 676

SHOP: 355 CRS Propulsion

Building: 5245

| WASTE PRODUCT  | QTY(GAL/YR) | DISPOSAL |  |
|----------------|-------------|----------|--|
| Rinsewater     | 660         | OWS      |  |
| Rinsolve 140   | 660         | DNH      |  |
| Paint Stripper | 660         | DH       |  |
| JP-4           | 120         | DNH      |  |
| Carbon Remover | 660         | DH       |  |

TOTAL: 2760

SHOP: 355 EMS AGE

Building: 4127

| WASTE PRODUCT   | QTY(GAL/YR) | DISPOSAL |
|-----------------|-------------|----------|
| Speedy Dry      | NQ          | T        |
| Synthetic Oil   | 660         | DNH      |
| Rags            | NQ          | SBC      |
| JP-4            | 330         | DNH      |
| Rinsolve 140    | 110         | DN H     |
| Hydraulic Fluid | 660         | DNH      |
| ·               |             |          |

SHOP: 355 EMS Armament

Building: 4710

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |
|---------------|-------------|----------|
| LA 175 Soap   | 220         | OWS      |
| Spray Paint   | NQ          | UIP      |
| Rags          | NQ          | SBC      |

TOTAL: 220

SHOP: 355 EMS NDI

Building: 5406

| WASTE PRODUCT     | QTY(GAL/YR) | DISPOSAL |  |
|-------------------|-------------|----------|--|
| Mag Particle Soln | 40          | DH       |  |
| TCA               | 100         | DH       |  |
| Dye Penetrant     | 110         | DH       |  |
| X-Ray Developer   | 600         | DD       |  |
| X-Ray Fixer       | 600         | SRDD     |  |
| Emulsifier        | 110         | DD       |  |
| Rags              | NQ          | SBC      |  |
| Developer         | 110         | DD       |  |

TOTAL: 1670

SHOP: 355 EMS Wheel and Tire

Building: 4809

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |
|---------------|-------------|----------|
| Rinsolve 140  | 300         | DNH      |
| Rags          | NQ          | SBC      |
| TCA           | NQ          | UIP      |
|               |             |          |

TOTAL: 300

SHOP: 41 ECS AGE

Building: 125

| WASTE PRODUCT   | QTY(GAL/YR) | DISPOSAL |
|-----------------|-------------|----------|
| Motor Oil       | 660         | DNH      |
| Speedy Dry      | NQ          | T        |
| Batteries       | 36          | NDD      |
| Rags            | NQ          | T        |
| Rinsolve 140    | NQ          | DNH      |
| Aircraft Soap   | 660         | OWS      |
| Synthetic Oil   | 660         | DNH      |
| PD-680          | и8          | DH       |
| Hydraulic Fluid | 660         | DNH      |

SHOP: 41 ECS Aircraft Maint

Building: 139

| WASTE PRODUCT   | QTY(GAL/YR) | DISPOSAL |  |
|-----------------|-------------|----------|--|
| Hydraulic Fluid | 12          | DNH      |  |
| Engine Oil      | 180         | DNH      |  |
| Speedy Dry      | NQ          | Т        |  |
| PD-680          | 30          | DH       |  |
| Rags            | NQ          | T        |  |
| Turbine Oil     | 24          | DNH      |  |
|                 |             |          |  |

TOTAL: 246

SHOP: 41 ECS Corrosion Control

Building: 136

| WASTE PRODUCT       | QTY(GAL/YR) | DISPOSAL |
|---------------------|-------------|----------|
| Soap                | 4800        | OWS      |
| Rags                | NQ          | Т        |
| Poly & Enamel Paint | 96          | DH       |
| Paint Filters       | 432         | Т        |
| Thinners            | 60          | DH       |

TOTAL: 5388

SHOP: 41 ECS Electric

Building: 129

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |
|---------------|-------------|----------|
| Liquid Oxygen | 2400        | UIP      |
| Dibromethane  | 60          | UIP      |
| MEK           | 12          | UIP      |
| Rags          | NQ          | Т        |
| Speedy Dry    | NQ          | Τ        |
| Engine Oil    | 2           | DNH      |
| biigine oit   |             | DINTI    |

SHOP:

41 ECS Fuel System Repair

Building: 136

| WASTE PRODUCT | QTY(GAL/YR)                            | DISPOSAL |
|---------------|----------------------------------------|----------|
| JP-4          | 36                                     | DN H     |
| Soap          | NQ                                     | OWS      |
| Speedy Dry    | NQ                                     | T        |
| Rays          | NQ                                     | τ        |
| MEK           | NQ                                     | UIP      |
|               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          |

TOTAL: 36

SHOP: 41 ECS Hydraulic

Building: 136

| QTY(GAL/YR) | DISPOSAL |                |
|-------------|----------|----------------|
| 24          | DNH      |                |
| NQ          | T        |                |
| 320         | DNH      |                |
|             | 24<br>NQ | 24 DNH<br>NQ T |

TOTAL: 344

SHOP: 41 ECS Propulsion

Building: 133

| WASTE PRODUCT     | QTY(GAL/YR) | DISPOSAL | <u> </u> |
|-------------------|-------------|----------|----------|
| Engine Oil        | 1320        | DNH      |          |
| Hydraulic Fluid   | 330         | DNH      |          |
| Toluene           | NQ          | UIP      |          |
| MEK               | NQ          | UIP      |          |
| PD-680            | 1 38        | DH       |          |
| Bio-Franklin Soap | NQ          | UIP      |          |
| Rags              | NQ          | T        |          |
|                   |             |          |          |

TOTAL: 1788

SHOP: 836 Auto Hobby

Building: 4531

| WASTE FRODUCT      | QTY(GAL/YR) | DISPOTAL |
|--------------------|-------------|----------|
| Antifreeze         | 120         | DD       |
| Carburetor Cleaner | 480         | SBC      |
| Albrite Soap       | 30          | OWS      |
| Roughneck Soap     | 36          | OWS      |
| Safety Kleen       | 480         | SBC      |
| Paint Filters      | 240         | Т        |
| Motor Oil          | 3000        | DN H     |
|                    |             |          |

SHOP: 836 CES Heating Plant

Building: 5309

| WASTE PRODUCT                    | QTY(GAL/YR)  | DISPOSAL  | _ |
|----------------------------------|--------------|-----------|---|
| Cyclohexylamine<br>Sulfamic Acid | 2400<br>1380 | DD<br>NDD |   |
| Phosphate                        | 2400         | DD        |   |
| Sodium Bisulfite                 | 2400         | DD        |   |
|                                  |              |           |   |

TOTAL: 8580

SHOP: 836 CES Liquid Fuels

Building: 5309

| WASTE PRODUCT | QTY(GAL/YR) |     |
|---------------|-------------|-----|
| Fuel Sludge   | 275         | DNH |
|               |             |     |

TOTAL: 275

SHOP: 836 CES Power Production

Building: 5122

| WASTE PRODUCT   | QTY(GAL/YR) | DISPOSAL |  |
|-----------------|-------------|----------|--|
| Diesel          | 150         | LNH      |  |
| Hydraulic Fluid | 50          | DNH      |  |
| Motor Oil       | 150         | DNH      |  |
| Spray Paint     | NQ          | UIP      |  |
| Rags            | NQ          | T        |  |
| Paint Thinner   | NQ          | UIP      |  |
|                 |             |          |  |

TOTAL: 350

SHOP: 836 CES Refrigeration

Building: 5309

| WASTE PRODUCT                 | QTY(GAL/YR) | DISPOSAL |  |
|-------------------------------|-------------|----------|--|
| Inhibitor Cooling Tower Treat | N Q<br>N O  | DD<br>DD |  |
|                               |             |          |  |

SHOP: 836 Hosp Clinical Lab

Building: 400

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |  |
|---------------|-------------|----------|--|
| Xylene        | 36          | DH       |  |
| Formlin       | 200         | DD       |  |
| Alcohol       | 25          | DD       |  |
|               |             |          |  |

TOTAL: 261

SHOP 836 HOSP Dental Clinic

Building: 400

| WASTE PRODUCT      | QTY(GAL/YR) | DISPOSAL |  |
|--------------------|-------------|----------|--|
| X-Ray Developer    | 24          | DD       |  |
| Vapo-Steril        | 24          | DD       |  |
| Acetone            | NQ          | UIP      |  |
| Ultrasonic Cleaner | 12          | DD       |  |
| Dialdehyde         | 120         | DD       |  |
| Potassium Cyanide  | NQ          | DD       |  |
| X-Ray Fixer        | 24          | SRDD     |  |
| Vacuucleaner       | 480         | DD       |  |
| Wax Solvewnt       | 2           | DD       |  |
| Chloroform         | NQ          | UIP      |  |

TOTAL: 686

SHOP: 836 TRANS Allied Trades

Building: 4705

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |
|---------------|-------------|----------|
| Paint Filters | NQ          | Т        |

SHOP: 836 TRANS Fire Truck Maint

Building: 4823

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |
|---------------|-------------|----------|
| Motor Oil     | 660         | DNH      |
| Antifreeze    | 60          | DD       |
| Rags          | NQ          | T        |
| Spray Paint   | NQ          | UIP      |
|               |             |          |

SHOP: 836 TRANS Gen/Spec Purp Maint Building: 4507

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |
|---------------|-------------|----------|
| Rinsolve 140  | 300         | DNH      |
| Batteries     | NQ          | NDD      |
| Motor Oil     | 7200        | DNH      |
| Rags          | 480         | T        |
| Trans Fluid   | 100         | DNH      |
| Steam-It Soap | NQ          | OWS      |

TOTAL: 8080

SHOP: 868 TMMS AGE

Building: 72

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL | _ |
|---------------|-------------|----------|---|
| Batteries     | 6           | NDD      |   |
| 7808 Oil      | 240         | DNH      |   |
| Diesel        | 240         | DNH      |   |
| Motor Oil     | 220         | DNH      |   |
| Speedy Dry    | NQ          | Т        |   |
| Rags          | NQ          | T        |   |
| _             |             |          |   |

TOTAL: 706

SHOP: 868 TMMS Corrosion Control

Building: 72

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |  |
|---------------|-------------|----------|--|
| Oil and Fluid | 440         | DN H     |  |
| Paint Wastes  | 30          | DH       |  |

TOTAL: 470

SHOP: 868 TMMS Vehicle Maintenance

Building: 72

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |  |
|---------------|-------------|----------|--|
| Safety Kleen  | 180         | SBC      |  |
| Biogenic Soap | 110         | OWS      |  |
| Trans Fluid   | 125         | DN H     |  |
| Engine Oil    | 2100        | UGT      |  |

SHOP:

AMARC Corrosion/Paint

Building: 7425

| WASTE PRODUCT | QTY(GAL/YR) | DISPOSAL |
|---------------|-------------|----------|
| Paint Waste   | 220         | DH       |
|               |             |          |

TOTAL: 220

SHOP: AMARC Materials Lab

Building: 7615

| WASTE PRODUCT     | QTY(GAL/YR) | DISPOSAL |
|-------------------|-------------|----------|
| Hydrochloric Acid | 12          | UIP      |
| Engine Oil        | 360         | DNH      |
| Hydraulic Fluid   | 360         | DH       |
| Freon             | 60          | DH       |
| Nitric Acid       | 1           | UIP      |
|                   |             |          |

TOTAL: 793

SHOP: AMARC NDI

Building: 7401

| WASTE PRODUCT                                    | QTY(GAL/YR)          | DISPOSAL             |  |
|--------------------------------------------------|----------------------|----------------------|--|
| Emulsifier Mag Particle Soln Penetrant Developer | 55<br>30<br>55<br>55 | DH<br>DH<br>DH<br>DH |  |

TOTAL: 195

SHOP:

AMARC Pneudraulics

Building: 7415

| WASTE PRODUCT   | QTY(GAL/YR) | DISPOSAL | _ |
|-----------------|-------------|----------|---|
| Rags            | NQ          | T        |   |
| Hydraulic Fluid | 440         | DN H     |   |
| Rinsolve 140    | <b>1</b> 65 | DNH      |   |
|                 | _           |          |   |

Soap NaOH

TCA

WASTE PRODUCT

Phosphoric Acid

Carbon Remover

Paint Stripper Bead Blast Media

Rinsolve 140

SHOP: AMARC Small Parts Cleaning

|             | Building: 7401 |
|-------------|----------------|
| QTY(GAL/YR) | DISPOSAL       |
| 5           | DH             |
| 700         | DH             |
| 700         | DH             |
| NQ          | T              |
| NQ          | OWS            |
| NQ          | REP            |

REP

OWS

TOTAL: 1405

NQ NQ

NQ

LEGEND: T - TRASH

DH - DRUMMED HAZ WASTE

DD - DOWN DRAIN

REP - REPLENISHED

REC - RECYCLED

UGT - UNDERGROUND TANK

OWS - OIL/WATER SEPARATOR

FTP - FIRE TRAINING PIT

UIP - USED IN PROCESS

SBC - SERVICED BY CONTRACTOR

DNH - DRUMMED NON HAZ WASTE NDD - NEUTRALIZED THEN DOWN DRAIN

SRDD - SILVER RECOVERY THEN

DOWN DRAIN

APPENDIX G
WASTEWATER ANALYTICAL DATA

(This page left blank)

| 1.90 4.60 1.30 <0.3<br>220.00 280.00 280.00 275.00<br>192.00 119.00 83.00 115.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.00 38.00 68.00<br>3.60 9.40 12.20 | 32.00 33.00 36.00 | 0.16 <.10 0.12 | 37.60 40.80 49.60       | 0.33 8.00 6.20 | 20.50 14.00 13.00 | 0.02 0.02 0.02 | 0.02 | 12.00 11.00 | 47.00 23.00 15.00 | <100 <100 <100 | <100 <100 <100 | <100 <100 <100 | <100 <100 <100 |                | <100 <100 <100 | 874.00 1638.00 1274.00 | <20 <20 <20 <20 | <100 <100 <100 | 1.40 <1 1.10 | <100 <100 <100 | <10 <10 <10 | <10 <10 <10 | 161.00 123.00 342.00 | 52.60 52.30 48.40 | 8.80 8.80 9.20 |     |      | 394.00 139.00 201.00 250.00 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|----------------|-------------------------|----------------|-------------------|----------------|------|-------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------|-----------------|----------------|--------------|----------------|-------------|-------------|----------------------|-------------------|----------------|-----|------|-----------------------------|
| 32.40<br>400.00<br>57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.00                                | 33.00             | 0.12           | 37.20                   | 7.60           | 25.00             | 0.01           | 0.01 | 12.00       | 20.00             | <100           | 109.00         | <100           | <100           | <50            | <100           | 785.00                 | <b>&lt;20</b>   | <100           | 1.40         | <100           | <10         | <10         | <100                 | 53.10             | 9.20           |     |      | 383.00                      |
| 70.40<br>400.00<br>166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35.00                                | 30.00             | 0.10           | 30.00                   | 5.60           | 17.50             | 0.01           | 0.01 | 11.00       | 42.00             | <100           | 135.00         | <100           | <100           | <b>&lt;</b> 20 | <100           | 2872.00                | 31.00           | <100           | 3.30         | <100           | <10         | 17.00       | 325.0r               | 61.20             | 10.00          |     |      | 689.00                      |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | Par<br>Lygi       |                |                         | 原元             | IIIQ/L            | 阿凡             | 配元   | 7/bn        | 7/bn              | ng/L           | 7/bn           | ng/L           | T/gu           | ng/L           | ng/L           | T/bn                   | ng/L            | ng/L           | 7<br>Zyn     | 7/gn           | ng/I        | 7Zbn        | ng/L                 | 瓦克                | 邓九             | ngÆ | mg/L | 1/bn                        |
| SITE 1 POT EXTR HYD MCHEMICAL OXYGEN DEMAND MCHEMICAL OXYGEN DEMAND MCHEMICAL OXYGEN DEMAN |                                      |                   |                | TOTAL KJELDAHL NITROGEN |                |                   |                |      |             |                   |                |                |                |                |                |                |                        |                 |                |              |                |             |             |                      |                   |                |     |      |                             |

| AVERAGE | <100<br>1100.00                       | ERR 42.50 | ERR<br>ERR<br>510.83                                     | 517.40<br>166.17                                   | 922.1/<br>60.17<br>5.18                 | ERR <100                         | <100<br><100<br>324.00<br>5.07    | ERR<br>1.60<br>1.70                          | 53.50                          | 6.80                                                      | 1.40<br>13.00<br>140.00                           |
|---------|---------------------------------------|-----------|----------------------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------|-----------------------------------|----------------------------------------------|--------------------------------|-----------------------------------------------------------|---------------------------------------------------|
|         |                                       |           |                                                          |                                                    |                                         |                                  |                                   |                                              |                                |                                                           |                                                   |
|         | <100<br>1450.00                       | 47.00     | 464.00                                                   | 305.00                                             | 64.00<br>9.80                           | <100<br><100<br>100              | <100<br><100<br>370.00<br>4.00    | 2.40                                         |                                |                                                           |                                                   |
|         | <100<br>1700.00                       | 48.00     | 675.00                                                   | 508.00<br>163.00<br>877.00                         | 15.00                                   | 7100<br>7100<br>7100             | 4100<br>4100<br>333.00<br>6.20    | 1.30                                         |                                |                                                           |                                                   |
|         | <100<br>850.00                        | 29.00     | 412.00                                                   | 487.00<br>141.00<br>864.00                         | 78.00                                   | <100<br>104.00                   | <pre>&lt;100 269.00 5.00</pre>    | 2.20                                         |                                |                                                           |                                                   |
|         | <100<br>500.00                        | 32.00     | 398.00                                                   | 528.00<br>67.00<br>942.00                          | 83.00                                   | <100<br><100<br><100             | <100<br>328.00<br>11.20           | 1.60                                         |                                |                                                           |                                                   |
|         | <100<br>1000.00                       | 37.00     | 560.00                                                   | 581.00<br>179.00<br>977.00                         | 49.00                                   | <100<br><100<br><100             | <100<br>333.00<br>0.80            | 1.50                                         | 75.00                          | 6.80<br>7.10                                              | 13.00                                             |
|         | <100<br>1100.00                       | 62.00     | 556.00<br>15.00                                          | 483.00<br>142.00<br>914.00                         | 72.00                                   | <100<br>230.00<br><100           | <100<br>274.00<br>0.60            |                                              | 32.00<br>5.10                  | 6.80<br>7.10                                              | 1.40<br>13.00<br>140.00                           |
|         | Ton<br>Ton                            | 200円      |                                                          | mg/L<br>my/L<br>manhos                             | E C C C C C C C C C C C C C C C C C C C | T/bn<br>T/bn                     | T for T for                       |                                              |                                | 7/6n<br>1/6n                                              | ng/L<br>ng/L                                      |
|         | olved                                 |           | FLUORIDE<br>Residue Filterable (TDS)<br>Residue Non (SS) | latile<br>nductance                                | w                                       |                                  |                                   | NE<br>OBENZENE                               | METHYL-NE CHLORIDE NAPHTHALENE | HALAIE<br>PHIHALAIE<br>E                                  | BENZYL-BUTYLPHTHALATE<br>BIS(2ETHYLHEXYL)PHTHALAT |
| !<br>!  | BERYLLIUM<br>BORON<br>BORON Dissolved | CHLORIDE  | FLUORIDE<br>Residue Filterab<br>Residue Non (SS)         | Residue<br>Residue Volatile<br>Specfic Conductance | SULFATE<br>SURFACTANTS<br>TURBIDITY     | COBALT<br>MOLYBDENUM<br>TITANIUM | VANADIUM<br>ALK TOTAL<br>SULFIDES | CHLOROFORM CHLOROMETHANE 1,4-DICHLOROBENZENE | METHYL-NE CHLORIDE NAPHTHALENE | DIEINIL FRINALATE<br>DI-n-BUTYL PHTHALATE<br>RROMOMETTANE | BENZYL-BUTYLPHTHALATE<br>BIS(2ETHYLHEXYL)PHTHA    |

| Δ  |
|----|
|    |
| Ę  |
| 8  |
| _  |
| 11 |

|          | 1,3-DICHLOROBENZENE<br>1,4-DICHKIRIBENZENE<br>ETHYL BENZENE<br>TOLUENE | 2      | 3.06<br>3.06<br>1.20 | 14.00<br>6.10<br>3.00 | 4.90<br>3.50 | . 2.00 | 2.20           | 1.60 | 14.00<br>4.67<br>1.93<br>1.20 |
|----------|------------------------------------------------------------------------|--------|----------------------|-----------------------|--------------|--------|----------------|------|-------------------------------|
|          | 601                                                                    |        |                      |                       |              | AVI    | AVERAGE        |      |                               |
|          | BROWODICHLOPOMETHANE                                                   | mcg/L  | 4.4                  |                       |              |        | <b>6.4</b>     |      |                               |
|          | BROMOFORM                                                              | mcg/L  | <b>6.7</b>           |                       |              |        | <b>7.</b> >    |      |                               |
|          | BROMOMETHANE                                                           | mcg/L  | 6.>                  |                       |              |        | 6.>            |      |                               |
|          | CARBON TETRACHLORIDE                                                   | mcg/L  | <b>&lt;.</b> 5       |                       |              |        | <br>           |      |                               |
|          | CHLOROBENZENE                                                          | mcg/L  | <b>9.</b>            |                       |              |        | 9.°            |      |                               |
|          | CHLOROETHANE                                                           | mcg/L  | 6.>                  |                       |              |        | 6.>            |      |                               |
|          | 2-CHLOROETHYIVINYL ETHER                                               | mcg/L  | 6.>                  |                       |              |        | 6.>            |      |                               |
|          | CHLOROFORM                                                             | mcg/L  | <b>&lt;.</b> 3       |                       |              |        | <b>6.3</b>     |      |                               |
|          | CHLOROMETHANE                                                          | mcq/L  | <b>8.</b> %          |                       |              |        | 8·×            |      |                               |
|          | DIBEROMOCHLOROMETHANE                                                  |        | 6.>                  |                       |              |        | 6.>            |      |                               |
|          | 1,2-DICHLOROBENZENE                                                    |        | <b>1</b>             |                       |              |        | ۲<br>۲         |      |                               |
| я        | 1,3-DICHLOROBENZENE                                                    |        | <b>&lt;.</b> 5       |                       |              |        | <b>&lt;.</b> 5 |      |                               |
| <b>a</b> | 1,4-DICHLOROBENZENE                                                    | mcg/L  | <.7                  |                       |              |        | <b>&lt;.7</b>  |      |                               |
|          | DICHLORODIFLUOROMETHANE                                                | mcg/L  | 6.9                  |                       |              |        | 6.>            |      |                               |
|          | 1,1-DICHLOROETHANE                                                     | Incg/L | <b>4.4</b>           |                       |              |        | <b>4.</b> 4    |      |                               |
|          | 1,2-DICHLOROETHANE                                                     | Inco/L | <b>.</b> 3           |                       |              |        | ۰.3<br>آ       |      |                               |
|          | 1,1-DICHLOROETHENE                                                     | mcg/L  | <b>ć.</b> 3          |                       |              |        | £.>            |      |                               |
|          | TRANS-1, 2-DICHLOROETHENE                                              | mcg/L  | <b>&lt;.</b> 5       |                       |              |        | <b>&lt;.</b> 5 |      |                               |
|          | 1,2-DICHLOROPORPANE                                                    | mcg/L  | <b>ć.</b> 3          |                       |              |        | ۰.3<br>ا       |      |                               |
|          | CIS-1, 3-DICHLOROPROPENE                                               | mcg/L  | <b>^.</b> 5          |                       |              |        | <br>           |      |                               |
|          | TRANS-1, 2-DICHLOROPROPEN                                              | mcg/L  | <.5                  |                       |              |        | <b>.</b> .5    |      |                               |
|          | METHYLENE CHLORIDE                                                     | mcg/L  | 4.4                  |                       |              |        | <b>4.</b> 4    |      |                               |
|          | 1,1,2,2-TETRACHLOROETHAN                                               | mcg/L  | <b>&lt;.</b> 5       |                       |              |        | <b>.</b> .5    |      |                               |
|          | TETRACHLOROE: HYLENE                                                   | mcq/L  | <b>9.</b>            |                       |              |        | <b>9.</b> >    |      |                               |
|          | 1,1,1-TRICHLOROETHANE                                                  | mcg/L  | <b>^.</b> 5          |                       |              |        | · · 2          |      |                               |
|          | 1,1,2-TRICHLOROETHANE                                                  | mcg/L  | <b>&lt;.</b> 5       |                       |              |        | <b>5.</b> >    |      |                               |
|          | TRICHLOROETHYLENE                                                      | mcg/L  | <b>&lt;.</b> 5       |                       |              |        | <b></b> 5      |      |                               |
|          | TRI CHLOROLUOROMETHANE                                                 | mcg/L  | 4.4                  |                       |              |        | <b>4.4</b>     |      |                               |
|          | VINYL CHLORIDE                                                         | mcg/L  | 6.9                  |                       |              |        | 6.>            |      |                               |

| CONTINUED |
|-----------|
| -         |
| SITE      |

AVERAGE

| ur<br>V        | ;             | ζ.,<br>ζ.5          | /.^<br>6.3                           | <b>6.</b> 3   |
|----------------|---------------|---------------------|--------------------------------------|---------------|
|                |               |                     |                                      |               |
| <b>5.</b> 5    | 9.7           | <b>4.5</b>          | <b>6.7</b>                           | <b>&lt;.3</b> |
| mcg/L          | T POPE        | ECG/L               | acg/t                                | mcg/L         |
| 602<br>Benzene | CHLOROBENZENE | 1,3-DICHLOROBENZENE | I, 4-DICHLOROBENZENE<br>ETHYLBENZENE | TOLUENE       |

SITE 2

| 3.07<br>645.00<br>169.17                                           | 81.00<br>17.00                       | 26.67  | 0.03           | 44.67 | 6.67                 | 18.67      | 90.0 | ERR  | 15.00  | 43.67              | ERR     | 149.00 | <100    | <100     | <50                 | <100   | 1292.33 | <20  | <100      | 1.90    | <100   | <20      | <20    | 204.00 | 52.23   | 9.30      | ERR       | ERR    | ERR<br>326.33          |
|--------------------------------------------------------------------|--------------------------------------|--------|----------------|-------|----------------------|------------|------|------|--------|--------------------|---------|--------|---------|----------|---------------------|--------|---------|------|-----------|---------|--------|----------|--------|--------|---------|-----------|-----------|--------|------------------------|
| 4.80<br>395.00<br>212.50                                           | 100.00<br>25.90                      | 29.50  | <0.03<br><0.03 | 54.40 | 10.80                | 32.00      | 0.03 |      |        | 40.00              |         | <100   | <100    | <100     | <50                 | <100   | 378.00  | <20  | <100      |         | <100   | <20      | <20    | <100   | 46.10   | 9.00      |           |        | 134.00                 |
| 2.20<br>390.00<br>151.00                                           | 81.00                                | 25.50  | 0.03           | 34.80 | 8.20                 | 10.50      | 0.12 |      | •      | 34.00              |         | <100   | <100    | <100     | <50                 | <100   | 2726.00 | <20  | <100      |         |        |          |        |        |         |           |           |        | 632.00                 |
| 2.20<br>1150.00<br>144.00                                          | 62.00                                | 25.00  | 0.02           | 44.80 | 10.00                | 13.50      | 0.03 | L    | 15.00  | 27.00              |         | 149.00 | <100    | <100     | <50                 | <100   | 773.00  | <20  | <100      | 1.90    | <100   | <20      | <20    | 136.00 | 42.00   | 8.30      |           |        | 213.00                 |
| mg/t<br>mg/t                                                       |                                      | 四九四    |                | IIG/L | mg/L                 | 邓元         |      | mg/L | 7/bn   | 7/bn               | ng/L    | 7/bn   | ng/L    | 7/bn     | 7/bn                | ng/L   | 7/bn    | ng/L | ng/t      | Ing/L   | 7/bn   | ng/L     | ng/L   | 7/bn   | Ing/L   | ng/L      | 7/bn      | mg/L   | ng/L                   |
| POT EXTR HYD<br>CHEMICAL OXYGEN DEMAND<br>BIOCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON<br>OIL & GREASE | AMONIA | NITRITE        | JEL   | PHOSPHORUS ortho PO4 | PHOSPHORUS |      | free | (EPA ( | PHENOLS (MTH. 420) | ARSENIC | BARIUM | CADMIUM | CHROMIUM | CHROMIUM Hexavalent | COPPER | IRON    | LEAD | MANGANESE | MERCURY | NICKEL | SELENIUM | SILVER | ZINC   | CALCIUM | MAGNESIUM | POTASSIUM | MUIGOS | ICP METALS<br>ALUMINUM |

| 6     | ļ     |
|-------|-------|
|       | ***** |
| c     | 3     |
| CTITE | 1772  |

| BERYLIUM BORON           | T bn<br>Tan | <100<br>700.00 | <100<br>550.00 | <100<br>600.00 | <100<br>616.67 |
|--------------------------|-------------|----------------|----------------|----------------|----------------|
| BORON DISSOLVED          | ug/r        | 50.00          | 40.00          | 72.00          | 54.00          |
| COLOR                    | .B          |                |                |                | ERR            |
| FLUORIDE                 | mq/L        |                |                |                | ERR            |
| Residue Filterable (TDS) | _           | 484.00         | 240.00         | 610.00         | 444.67         |
| Residue Non (SS)         | mq/L        | 4960.00        |                |                | 4960.00        |
| Residue                  | mg/L        | 531.00         | 689.00         |                | 610.00         |
| Residue Volatile         | mq/L        | 573.00         | 186.00         | 231.00         | 330.00         |
| Specfic Conductance      | umpos       | 1006.00        | 821.00         | 994.00         | 940.33         |
| SULFATE                  | mg/L        | 29.00          | 15.00          | 10.00          | 18.00          |
| SURFACTANTS              | ng/L        | 7.40           | 9.00           | 18.50          | 10.63          |
| TURBIDITY                |             |                |                |                | ERR            |
| COBALT                   |             |                |                | <100           | <100           |
| MOLYBDENUM               |             |                |                | <100           | <100           |
| TITANIOM                 |             |                |                | <100           | <100           |
| VANADIUM                 |             |                |                | <100           | <100           |
| ALK TOTAL                |             |                | 318.00         | 353.00         | 242.00         |
| SULFIDES                 |             | 4.00           |                | 2.60           | 4.20           |

| SITE 3 POT EXTR HYD CHEMICAL OXYGEN DEMAND | 120g  | 0.60           |   | AVERAGE<br>0.60<br>530.00 |
|--------------------------------------------|-------|----------------|---|---------------------------|
| 3                                          | 7/5   | 141.00         |   | 141.00                    |
|                                            |       | 4.50           |   | 4.50                      |
| AMMONTA                                    | Z/SE  | 21.00          |   | 21.00                     |
| NITRATE                                    | III V | 1.24           |   | 1.24                      |
| NITRITE                                    |       | <b>&lt;.02</b> |   | <.02                      |
| TOTAL KJELDAHL NITROGEN                    | T/DE  | 64.00          |   | 64.00                     |
| PHOSPHORUS ortho PO4                       | EQ.7. | 5.60           |   | 2.60                      |
| PHOSPHORUS                                 | T/bu  | 11.00          |   | 11.00                     |
| CYANIDE                                    | III V | 0.02           |   | 0.05                      |
| CYANIDE free                               | III T |                |   | ERR                       |
|                                            | ng/L  | 29.00          |   | 29.00                     |
|                                            | ng/L  | 55.00          |   | 25.00                     |
| ARSENIC                                    | 7/bn  |                |   | ERR                       |
| BARIUM                                     | ng/L  |                |   | ERR                       |
| CADMIUM                                    | 7/bn  |                |   | ERR                       |
| CHROMIUM                                   | ng/L  |                |   | ERR                       |
| CHROMIUM Hexavalent                        | 7/5n  |                |   | ERR                       |
| COPPER                                     | 7/bn  |                |   | ERR                       |
| IRON                                       | ng/L  |                |   | ERR                       |
| LEAD                                       | 7/5n  |                |   | ERR                       |
| PANCANESE                                  | 7/bn  |                |   | ERR                       |
| MERCURY                                    | 7/bn  |                |   | EKK                       |
| NICKEL                                     | ng/L  |                | 1 | ERR                       |
| SELENIUM                                   | 7/bn  |                |   | ERR                       |
| SILVER                                     | ng/L  |                |   | ERR                       |
| ZINC                                       | ng/L  |                |   | ERR                       |
| CALCIUM                                    | 邓元    |                |   | ERR                       |
| MAGNESIUM                                  | mg/L  |                |   | ERR                       |
| POTASSIUM                                  | ng/L  |                |   | ERR                       |
| SODIUM                                     |       |                |   | E SE                      |
| ALUMINOM                                   | ng/L  |                |   | ERR                       |

| CONTINUED |
|-----------|
| SITE 3    |

AVERACE

|    | BERYLIUM                 | ug/L  | 450.00  | ERR 450.00 |
|----|--------------------------|-------|---------|------------|
|    | BORON Dissolved          | 7/50  |         | ERR        |
|    | CHLORIDE                 | 五石    |         | BIG        |
|    | COLOR                    | 8     |         | EER        |
|    | FLUORIDE                 |       |         |            |
|    | Residue Filterable (TDS) | ng/L  | 570.00  | 570.00     |
|    | Residue Non (SS)         | III / |         | STEE       |
|    | Residue                  | IIG/L | 1002.00 | 1002.00    |
|    | Residue Volatile         | mq/L  | 413.00  | 413.00     |
|    | Specfic Conductance      | Ing/L | 1167.00 | 1167.00    |
|    | SULFAITE                 | mg/L  |         | ERR        |
|    | SURFACTANTS              | Ind/L | 2.00    | 2.00       |
|    | TURBIDITY                | B     |         | EIKH       |
|    | COBALT                   | ug/L  |         | ERR        |
|    | MOLYBDENUM               | ng/L  |         | ERR        |
|    | TITANIUM                 | ng/L  |         | ERR        |
| 94 | VANIADIUM                | ng/L  |         | ERR        |
| 4  | ALK TOTAL                | EQ.   | 437.00  | 437.00     |
|    | SULFIDES                 | mg/L  |         | ERR        |

|    | STIME 4                  |         |        | AVERAGE |
|----|--------------------------|---------|--------|---------|
|    | POT EXTR HYD             | mq/L    | 1.00   | 1.00    |
|    | CHEMICAL OXYGEN DEMAND   | III V   | 480.00 | 480.00  |
|    | BIOCHEMICAL OXYGEN DEMAN | 7/ba    | 122.00 | 122.00  |
|    | TOTAL ORGANIC CARBON     |         | 62.00  | 62.00   |
|    | OIL & GREASE             | IId/I   | 4.50   | 4.50    |
|    | AMONIA                   | ING/L   | 21.00  | 21.00   |
|    | NTTRATE                  | mq/L    | 0.16   | 0.16    |
|    | NITRITE                  | ng/L    | <0.02  | <0.02   |
|    | TOTAL KJELDAHL NITROGEN  | mg/L    | 48.00  | 48.00   |
|    | PROSPHORUS ortho PO4     | Z Z     | 4.20   | 4.20    |
|    | PROSPHORUS               | 邓元      | 8.50   | 8.50    |
|    | CYANIDE                  | 阿人      | 0.01   | 0.01    |
|    | CYANIDE free             | 17/5m   |        | ERR     |
|    |                          | ng/L    | 20.00  | 20.00   |
|    |                          | 7/gn    | 74.00  | /4.00   |
|    | ARSENIC                  | ng/L    |        | ERR     |
|    | BARIUM                   | ng/L    |        | ERR     |
|    | CADMITUM                 | 7/bn    |        | ERR     |
| 9! | CHROMIUM                 | ng/L    |        | ERR     |
| 5  | CHROMIUM Hexavalent      | Z gn    |        | ERR     |
|    | COPPER                   | nd      |        | ERR     |
|    | IRON                     | ng/L    |        | ERR     |
|    | LEAD                     | ng/L    |        | ERR     |
|    | MANGANESE                | 7<br>on |        | ERR     |
|    | MERCURY                  | ng/L    |        | ERR     |
|    | NICKEL                   | T/bn    |        | ERR     |
|    | SELENTUM                 | T/bn    |        | FIRE    |
|    | SILVER                   | ng/L    |        | EER     |
|    | Z TNC                    | ng/T    |        | ERR     |
|    | CALCITIM                 | mq/L    |        | ERR     |
|    | MACANESTUM               | EQ./    |        | ERR     |
|    | POTASSTUM                | ng/T    |        | ERR     |
|    | MILLOS                   | EQ.7    |        | ERR     |
|    | TOP METALS               | •       |        | ERR     |
|    | ALUMINUM                 | ng/L    |        | ERR     |

| B      |
|--------|
| Z      |
| Z      |
| გ<br>_ |
| 년<br>7 |
| SIT    |
| ••     |

|    | SITE 4 CONTINUED            |         |        | AVERAGE |
|----|-----------------------------|---------|--------|---------|
|    | BERYLIUM                    | nq/L    |        | ERR     |
|    | BORCN                       | ng/L    | 456.00 | 456.00  |
|    | BORCN Dissolved             | Ng/L    |        | ERR     |
|    | CHLORIDE                    | IIQ/L   |        | ERR     |
|    | COLOR                       | 8       |        | ERR     |
|    | FLUORIDE                    | T/bu    |        | ERR     |
|    | Residue Filterable (TDS) uc | s) ug/L | 550.00 | 550.00  |
|    | Residue Non (SS)            | III T   |        | ERR     |
|    | Residue                     | mg/L    | 441.00 | 441.00  |
|    | Residue Volatile            | III J   | 168.00 | 168.00  |
|    | Specfic Conductance         | umpos   | 914.00 | 914.00  |
|    | SULFATE                     | Ing/L   |        | ERR     |
|    | SURFACTANTS                 | Ing/L   | 6.50   | 6.50    |
|    | TURBIDITY                   | 13.     |        | ERR     |
|    | CORALT                      | ng/L    |        | ERR     |
|    | MOLYBDENUM                  | 7/bn    |        | ERR     |
|    | TITANIOM                    | ng/L    |        | ERR     |
| 9  | VANADIUM                    | 7/bn    |        | ERR     |
| 96 | ALK TOTAL                   | Ing/L   | 309.00 | 309.00  |
|    | SULFIDES                    | mg/L    |        | ERR     |
|    |                             |         |        |         |

SITE 5

|    | BOY ENTRY HAD           | ma /T.     | 1.60   | )• <del>-</del> | 20       |
|----|-------------------------|------------|--------|-----------------|----------|
|    |                         |            | 200.00 | 200.00          | 00       |
|    | O                       | II June    | 209.00 |                 |          |
|    | TOTAL ORGANIC CARBON    | T/pm       |        | ធ               | ERR      |
|    | OIL & GREASE            | III J      | 1.90   | 1.90            | 8        |
|    | AMONIA                  | III J      |        | EI .            | ERR      |
|    | NITRATE                 | mq/L       |        | <b>a</b>        | ERR      |
|    | NITRITE                 | 17/5m      |        | 百               | æ        |
|    | TOTAL KJELDAHL NITROGEN | III T      |        | 豆               | æ        |
|    | PHOSPHORUS ortho PO4    | 7/5m       |        | <b>a</b>        | <b>X</b> |
|    | PHOSPHORUS              | II July 12 |        | <b>a</b>        | <b>x</b> |
|    | CYANIDE                 | Ing/L      | 0.02   | 0               | 02       |
|    | CYANIDE free            | mq/L       |        | EI .            | æ.       |
|    | PHENOLS (EPA 604)       | ng/L       | 13.00  | 13.00           | 00       |
|    | _                       | ng/L       |        | <b>5</b>        | æ<br>æ   |
|    |                         | 7/bn       |        | 园               | ERR      |
|    | BARIUM                  | 7/bn       |        | <b>L</b>        | æ        |
|    | CADMIUM                 | ng/L       |        | H               | <b>x</b> |
| 07 | CHROMIUM                | ng/L       |        | <b>E</b>        | <b>X</b> |
| ,  | CHROMIUM Hexavalent     | ng/L       |        | EI .            | <b>8</b> |
|    |                         | ng/L       |        | <b>B</b>        | æ        |
|    | IRON                    | ng/L       |        | Ø               | æ<br>æ   |
|    | LEAD                    | ng/L       |        | B               | æ        |
|    | MANGANESE               | ng/L       |        | B               | æ        |
|    | MERCURY                 | ng/L       |        | B               | æ        |
|    | NICKEL                  | ng/L       |        | ស               | <b>£</b> |
|    | SELENIUM                | ng/L       |        | ធ               | æ        |
|    | SILVER                  | ng/L       |        | EI .            | 器        |
|    | ZINC                    | ng/L       |        | <b>L</b>        | <b>8</b> |
|    | CALCIUM                 | mq/L       |        | ы               | ERR      |
|    | MACNESTUM               | IIQ/L      |        | 豆               | æ        |
|    | POTASSIUM               | ng/L       |        | 百               | æ        |
|    | SODIUM                  | ng/L       |        | 臣               | ERR      |
|    | ICP METALS              | <b>,</b>   |        | B               | ERR      |
|    | ALUMINUM                | ng/L       |        | 函               | æ        |

# SITE 5 CONTINUED

| 1/bn     | ng/L  | 7/bn            | III J    | 8     |          |                          | IIIQ/L           | IIIQ/L  | III J            | 7/5m                | 7/5m    | 1/5         | 13.       | 7/6n   | ng/L       | ng/L     | ng/I     | T/pm      | mg/L     |
|----------|-------|-----------------|----------|-------|----------|--------------------------|------------------|---------|------------------|---------------------|---------|-------------|-----------|--------|------------|----------|----------|-----------|----------|
| BERYLIUM | BORON | BORON Dissolved | CHLORIDE | COLOR | FLUORIDE | Residue Filterable (TDS) | Residue Non (SS) | Residue | Residue Volatile | Specfic Conductance | SULFATE | SURFACTANTS | TURBIDITY | COBALT | MOLYBDENUM | TITANIUM | VANADIUM | ALK TOTAL | SULFIDES |
|          |       |                 |          |       |          |                          |                  |         |                  |                     |         |             |           |        |            |          | 98       | 3         |          |

|   | 9 34113                  |              |        | AVERAGE | SPCE<br>CAE |
|---|--------------------------|--------------|--------|---------|-------------|
|   | POT EXTR HYD             | mq/L         | 64.40  |         | 64.40       |
|   | CHEMICAL OXYGEN DEMAND   | <b>1</b> 2/2 | 600.00 | Ŕ       | 332.20      |
|   | BIOCHEMICAL OXYGEN DEMAN |              | 224.00 | 2       | 224.00      |
|   | TOTAL ORGANIC CARBON     |              | 95.00  |         | 95.00       |
|   | OIL & GREASE             | IIIQ/L       | 896.00 | *       | 195.50      |
|   | APPONIA                  | II Day       | 13.50  | 4       | 154.75      |
|   | NITRATE                  | mg/L         | 0.12   |         | 6.81        |
|   | NITRITE                  | T/Dat        | 0.03   |         | 0.08        |
|   | TOTAL KJELDAHL NITROGEN  | 17/2m        | 24.00  |         | 24.00       |
|   | PHOSPHORUS ortho PO4     | Ing/L        | 20.30  |         | 20.30       |
|   | PHOSPHORUS               | ING/L        | 36.50  |         | 36.50       |
|   | CYANIDE                  | 五石           | 0.02   |         | 0.02        |
|   | CYANIDE free             | 12 par       |        |         | 0.02        |
|   | PHENOLS (EPA 604)        | ng/L         | 33.00  |         | 33.00       |
|   | PHENOLS (MTH. 420)       | ng/L         | 40.00  |         | 36.50       |
|   | ARSENIC                  | 7/bn         |        |         | 40.00       |
|   | BARIUM                   | 7/bn         |        |         | ERR         |
|   | CADMIUM                  | 7/bn         |        |         | EEE         |
| 0 | CHROMIUM                 | 7/bn         |        |         | ERR         |
|   | CHROMIUM Hexavalent      | ng/L         |        |         | EEE         |
|   | COPPER                   | ng/L         |        |         | EEE         |
|   | IRON                     | ng/L         |        |         | ERR         |
|   | LEAD                     | ng/L         |        |         | EEE         |
|   | MAINCANESE               | ng/L         |        |         | EKK         |
|   | MERCURY                  | 7/bn         |        |         | ERR         |
|   | NICKEL                   | 7/5n         |        |         | ERR         |
|   | SELENIUM                 | 7/bn         |        |         | ERR         |
|   | SILVER                   | ng/L         |        |         | ERR         |
|   | ZINC                     | Ng/L         |        |         | ERR         |
|   | CALCIUM                  | Ing/L        |        |         | EEE S       |
|   | MAGNESIUM                | mq/L         |        |         | EE          |
|   | POTASSIUM                | ng/L         |        |         | ERR         |
|   | SODIUM                   | III T        |        |         | ERR         |
|   | ICP METALS               | ,            |        |         | ER          |
|   | ALUMINUM                 | ng/L         | 257.00 |         | 257.00      |
|   |                          |              |        |         |             |

| E    |
|------|
| 8    |
| SITE |

AVERAGE

| 257.00<br>1900.00<br>1900.00<br>1900.00<br>1110.00<br>1303.00<br>898.50<br>926.00<br>1358.00<br>78.00<br>78.00<br>78.00<br>ERR<br>ERR<br>ERR<br>ERR<br>ERR                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                 |
| <b>0</b> 00000000000000000000000000000000000                                                                                                                                                                                    |
| 1900.00<br>1110.00<br>1303.00<br>494.00<br>1358.00<br>78.00                                                                                                                                                                     |
| Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type<br>Type                                                                                                                                                                    |
| BERYLIUM BORON BORON Dissolved CHLORIDE COLOR FILORIDE Residue Filterable (T Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES |
| 100                                                                                                                                                                                                                             |

SITE 7

| mg/L 25.20 0.60 mg/L 410.00 610.00 6            | mg/L 70.00 70.00 61.00 51.00 | 35.50 33.00 30.00 | 0.20 0.16 0.10 | 0.02 0.02 0.02 | : NITROGEN mg/L 38.40 38.40 47.20 | mg/L 7.80 7.40 6.60  | mg/L 22.00 20.50 11.00 | 0.02 0.02 0.01 | 1/bu | ug/L 13.00 | ug/L 30.00 30.00 30.00 | ug/L <100 <100 <100 | <100 <100 <100 | <100 <100 <100 | <100 <100 <100 | : ug/L <50 <50 <50  | <100 <100 <100 | 2013.00 835.00 1060.00 | <20 <20 <20 | <100 <100 <100 | 6.40 1.60 1.50 | <100 <100 <100 | <10 <10 <10 | 12.00 26.00 <10 | 101.00 131.00 162.00 | 49.00 55.30 54.00 | 8.80 9.90 9.90 |           |        |            | ERR |
|-------------------------------------------------|------------------------------|-------------------|----------------|----------------|-----------------------------------|----------------------|------------------------|----------------|------|------------|------------------------|---------------------|----------------|----------------|----------------|---------------------|----------------|------------------------|-------------|----------------|----------------|----------------|-------------|-----------------|----------------------|-------------------|----------------|-----------|--------|------------|-----|
| CHEMICAL OXYGEN DEMAND RICCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON         | AMONIA            | NITRATE        | NITRITE        | DEL DAH                           | PHOSPHORUS ortho PO4 | PHOSPHORUS             | CYANIDE        | free |            | PHENOLS (MTH. 420)     | ARSENIC             | BARIUM         | CADMIUM        | CHROMIUM       | CHROMIUM Hexavalent | COPPER         | IRON                   | LEAD        | MANCANESE      | MERCURY        | NICKEL         | SELENTUM    | SILVER          | ZINC                 | CALCIUM           | MAGNESIUM      | POTASSIUM | SODIUM | ICP METALS |     |

AVERAGE

| POT EXTR HYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SITE 8                  |        |        | AVERAGE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|--------|---------|
| 850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00<br>850.00                                                                                                                                                                         | OT EXTR HYD             | mg/L   | 37.40  | 37.40   |
| 8 204.00<br>8 204.00<br>8 20.00<br>8                                                                                                                                                                                                                                 | HEMICAL OXYGEN DEMAND   |        | 850.00 | 850.00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHEMICAL OXYGEN DEMAN   |        | 204.00 | 204.00  |
| 756 256 256 256 256 256 256 256 256 256 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WAT ORCANTO CARBON      | ma/L   |        | ·       |
| 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7 56 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IL & GREASE             | III V  | 00.96  | 96.00   |
| 7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50 | MACATA                  | mq/L   |        | ERR     |
| 7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50 | THRATE                  | mg/L   |        | ERR     |
| 7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50<br>7.50 | THRITE                  |        |        | ERR     |
| 7 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 17 50 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OTAL KIET DAHL NITROGEN | mg/L   |        | ERR     |
| 75m<br>75m<br>75m<br>75m<br>75m<br>75m<br>75m<br>75m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HOSPHORIS ortho PO4     | 調な石    |        | ERR     |
| ee mg/L FA 604) ug/L Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOSPHORUS               | mg/L   |        | ERR     |
| free mg/L (WTH. 420) ug/L (WTH. 420) ug/L ug/L  M Hexavalent ug/L ug/L ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  Ug/L  U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YANTDE                  | IIQ/L  |        | ERR     |
| (EPA 604) ug/L 59.00  (MTH. 420) ug/L 59.00  ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | mq/L   |        | ERR     |
| M Hexavalent ug/L 59.00  M ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                       | nd/I   |        | ERR     |
| ug/L ug/L ug/L wg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H.E.W.                  | ng/L   | 59.00  | 29.00   |
| ug/L  M Hexavalent ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | ng/L   |        | ERR     |
| M Hexavalent ug/L  IM Hexavalent ug/L  Ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARIUM                   | ng/L   |        | ERR     |
| UM Hexavalent ug/L Ug/L Ug/L Ug/L Ug/L V Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADMITTIN                | ng/L   |        | ERR     |
| UM Hexavalent ug/L ug/L ug/L ESE ug/L UM ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HROMIUM                 | ng/L   |        | ERR     |
| UNY USAL TALS USAL USAL USAL USAL USAL USAL USAL U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | ng/L   |        | ERR     |
| UM UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OPPER                   | ng/T   |        | ERR     |
| ESE UG/L  Y  UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NON                     | ng/I,  |        | ERR     |
| ESE UG/L  VG/L  UG/L  UM  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EAD                     | ng/L   |        | ERR     |
| TALS  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UM  UG/L  UG/L  UM/L  UM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANGANESE                | ng/L   |        | ERR     |
| UM UG/L  MA  LOS  LOS  LOS  LOS  LOS  LOS  LOS  LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ERCURY                  | ng/L   |        | EERR    |
| UM UG/L  UG/L  UG/L  UM/  UG/L  UM/  UG/L  TALS  UG/L  UM/  UG/L  UG/L  UM/  UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ICKEL                   | ng/L   |        | ERR     |
| R UG/L UM BG/L SIUM BG/L SIUM UG/L K ETALS UG/L NUM UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ELENIUM                 | ng/L   |        | ERR     |
| UM BG/L SIUM BG/L SIUM BG/L SIUM BG/L M BG/L M BG/L M BG/L MUM BG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TLVER                   | ng/L   |        | ERR     |
| UM mg/L SIUM mg/L SIUM ug/L M mg/L M mg/L NUM ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CNL                     | ug/L   |        | ERR     |
| Ton<br>Typu<br>Typu<br>S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALCTIM                  | mq/L   |        | ERR     |
| T/bn S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACNESTIM                | mg/L   |        | ERR     |
| TALS  UM  UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OTASSIUM                | nd/L   |        | ERR     |
| T/bn ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ODIUM                   | III /I |        | ERR     |
| T/bn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CP METALS               | ١      |        | ERR     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LUMINUM                 | nd/I   |        | ERR     |

| _      |     |
|--------|-----|
|        | ļ   |
| 7      | į   |
|        |     |
| Č      | Ś   |
| G<br>G | 0   |
| 1      | 777 |
| è      |     |

| ERR<br>ERR<br>ERR<br>29.00<br>ERR<br>ERR      | 770.00<br>ERR          | 148.00<br>863.00                                   | 65.00<br>1.90<br>ERR  | ERR<br>ERR<br>ERR<br>ERR                     | 314.00<br>ERR<br>ERR<br>ERR<br>ERR                   | ERR<br>1.70<br>0.60<br>ERR<br>ERR                                                     | 0.60<br>0.90<br>7.00<br>ERR                                            |
|-----------------------------------------------|------------------------|----------------------------------------------------|-----------------------|----------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 29.00                                         | 770.00                 | 333.00<br>148.00<br>863.00                         | 65.00<br>1.90         |                                              | 314.00                                               |                                                                                       |                                                                        |
| 29.00                                         | 770.00                 | 148.00<br>863.00                                   | 65.00<br>1.90         |                                              | 314.00                                               | 1.70                                                                                  | 0.60<br>0.90<br>7.00                                                   |
| T gu<br>T gu<br>T gu<br>T gu<br>T gu          | Typu (SCI)             | # # #<br>\$ \$2 \$2<br>5 \$5 \$5                   | mg/L<br>Light         | ng L<br>ng L<br>ng L                         | 7 56<br>7 56<br>7 56<br>7 56<br>7 56                 | Ton<br>Ton<br>Ton<br>Ton<br>Ton                                                       | 7.08<br>7.08<br>7.08<br>7.08<br>7.08                                   |
| BERYLIUM BORGN BORGN Dissolved CHLORIDE COLOR | Filterable<br>Non (SS) | resique<br>Resique Volatile<br>Specfic Conductance | SURFACTANTS TURBIDITY | COBALT<br>MOLYBDENUM<br>TITANIUM<br>VANADIUM | ALK TOTAL<br>SULFIDES<br>CHLOROFORM<br>CHLOROMETHANE | 1,4-DICHLOROBENZENE<br>TRANS-1,2-DICHLOROETHENE<br>METHYLENE CHLORIDE<br>BROMOMETHANE | 1,3-DICHLOROBENZENE<br>1,4-DICHKIRIBENZENE<br>ETHYL BENZENE<br>TOLUENE |

| SITE 9                   |        |        | AVERAGE |
|--------------------------|--------|--------|---------|
| POT EXTR HYD             | 17/Dan | 1.00   | 1.00    |
| CHEMICAL OXYGEN DEMAND   | mg/L   | 975.00 | 975.00  |
| BIOCHEMICAL OXYGEN DEMAN |        | 255.00 | 255.00  |
| TOTAL ORGANIC CARBON     | T/Dia  | 70.00  | . 70.00 |
| OIL & GREASE             | 1/50   | 4.00   | 4.00    |
| AMMONIA                  | Ing/L  | 5.00   | 2.00    |
| NITRATE                  | III 7  | 0.14   | 0.14    |
| NITRITE                  | Ing/L  | 0.03   | 0.03    |
| TOTAL KJELDAHL NITROGEN  | II DIE | 19.20  | 19.20   |
| PROSPHORUS ortho PO4     | II DII | 4.00   | 4.00    |
| PHOSPHORUS               | III J  | 17.50  | 17.50   |
| CYANIDE                  | T/Dat  |        | ERR     |
| CYANIDE free             | Ing/L  |        | ERR     |
| PHENOLS (EPA 604)        | ng/L   |        | ERR     |
| PHENOLS (MTH. 420)       | ng/L   | 37.00  | 37.00   |
| ARSENIC                  | ng/L   |        | ERR     |
| BARIUM                   | ng/L   |        | ERR     |
| CADMITUM                 | ng/L   |        | ER.     |
| CHROWIUM                 | ng/L   |        | ERR     |
| CHROMIUM Hexavalent      | ng/L   |        | ERR     |
| COPPER                   | ng/L   |        | ERR     |
| IRON                     | 7/5n   |        | ERR     |
| LEAD                     | 7/bn   |        | ERR     |
| MANCANESE                | ng/L   |        | ERR     |
| MERCURY                  | 1/5m   |        | ERR     |
| NICKEL                   | ng/L   |        | ERR     |
| SELENTUM                 | ng/L   |        | ERR     |
| SILVER                   | ng/L   |        | ERR     |
| ZINC                     | ng/L   |        | ERR     |
| CALCIUM                  | E L    |        | ERR     |
| MAGNESTUM                | mg/L   |        | ERR     |
| POTASSIUM                | ng/L   |        | ERR     |
| SODIUM                   | mg/L   |        | ERR     |
| ICP METALS               |        |        | ERR     |
| ALUMINUM                 | ng/L   |        | ERR     |

| CONTINUED |  |
|-----------|--|
| 11E 9 (   |  |
| EA.       |  |

| BERYLIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T/bn       |         | COL                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-------------------------|
| BORON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng/L       | 350,00  | 350 00                  |
| BORON Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd/L       |         | 00.000                  |
| CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | III J      | 150.00  | 150 071                 |
| COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8          |         |                         |
| FLUORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mq/L       |         |                         |
| Residue Filterable (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (TDS) uq/L | 507.00  | 507 00                  |
| Residue Non (SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |         | 20: 50: EBB             |
| Residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | II J       | 621.00  | 621_00                  |
| Residue Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mq/L       | 26.00   | 26.00                   |
| Specfic Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T/bu       | 975.00  | 975.00                  |
| SULFAITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mq/L       | 65.00   | 00.00<br>00.00<br>00.00 |
| SURFACTANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ma/T.      |         | 0                       |
| TURBIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E          | ÷ • • • | T;                      |
| COBALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | בי<br>בי   |         | EXX                     |
| MOLYROPAIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 5        |         | EKK                     |
| mr mantine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 Y        |         | ERR                     |
| TOTAL TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7/bn       |         | ERR                     |
| WANTED TO THE PARTY OF THE PART | ng/L       | 1       | ERR                     |
| ALA TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L       | 270.00  | 270.00                  |
| SOLE LUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7/6m       |         |                         |

| AVERACE | 1500.00                | 412.00                   | 00.96                | 40800.00     | 1.14   | 0.74    | 0.03    | 8.70                    | 2.20                 | 11.50      | 500.    | ERR          | ERR               | 15.00              | <100    | 103.00 | <100    | <100     | <b>\\$20</b>        | <100<br> | 776.00 | <b>\\$70</b>  | <b>&lt;100</b> | ♥ ;     | <b>&lt;100</b> | <b>&lt;10</b> | <10    | 118.00 | 118.00        | 91.10   | 15.70     | ERR       | ERR    |            |
|---------|------------------------|--------------------------|----------------------|--------------|--------|---------|---------|-------------------------|----------------------|------------|---------|--------------|-------------------|--------------------|---------|--------|---------|----------|---------------------|----------|--------|---------------|----------------|---------|----------------|---------------|--------|--------|---------------|---------|-----------|-----------|--------|------------|
|         | 1500.00                | 412.00                   | 96.00                | 40800.00     | 1.14   | 0.74    | 0.03    | 8.70                    | 2.20                 | 11.50      | .005    |              |                   | 15.00              | <100    | 103.00 | <100    | <100     | <b>&lt;</b> 20      | <100     | 776.00 | <b>&lt;20</b> | <100           | 7       | <100           | <b>&lt;10</b> | <10    | 118.00 | <10<br>118,00 | 91.10   | 15.70     |           |        |            |
| 7       |                        |                          |                      | IN TO THE    | T/bat  | T/ba    | IDG/L   | mg/L                    | I Da                 | mg/L       | IIIQ/I  | III / J      | ng/L              | ng/T               | ng/I    | ng/L   | ng/T    | ng/L     | ng/I                | ug/L     | ng/T   | 7<br>Jon      | ng/L           | mg/L    | ug/L           | ng/T          | ng/L   | ng/L   | ug/L          |         | Ind/L     | ng/L      | mg/L   |            |
| SITE 10 | CHEMICAL OXYGEN DEMAND | BIOCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON | OIL & GREASE | AMONIA | NITRATE | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS ortho PO4 | PHOSPHORUS | CYANIDE | CYANIDE free | PHENOLS (EPA 604) | PHENOLS (MTH. 420) | ARSENIC | BARTUM | CADMIUM | CHROMIUM | CHROMIUM Hexavalent | COPPER   | IRON   | TEND          | MANGANESE      | MERCURY | NICKEL         | SELENTUM      | SILVER | ZINC   | SILVER        | CALCIUM | MAGNESTUM | POTASSIUM | SODIUM | TO MENTALS |

| CONTINUED |
|-----------|
| 0         |
| -         |
| ITE       |

| <100     | 2000 00 | 00.0000         | 4 G      | A COLOR | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1460 00              | 00.001           | 2402 00 | 00.643           | 10/2.00             | 1179.00  | 104.00   | 0.10        | 20.3      | 7100   | 100        | 001      | 700        | 100.00    | ERR      |  |
|----------|---------|-----------------|----------|---------|---------------------------------------|----------------------|------------------|---------|------------------|---------------------|----------|----------|-------------|-----------|--------|------------|----------|------------|-----------|----------|--|
|          |         |                 |          |         |                                       |                      |                  |         |                  |                     |          |          |             |           |        |            |          |            |           |          |  |
| <100     | 5900.00 |                 |          |         |                                       | 1460.00              |                  | 2493.00 | 1072.00          | 1179 00             | 10:00    | 104.00   | 0.10        |           | <100   | <100       | <100     | <100       | 100.00    |          |  |
| 7/bn     | J/bn    | T/bn            | ING/L    |         |                                       | ESC (SCI             |                  |         |                  |                     |          |          | 7/5         | 2         | ng/L   | T/bn       | ng/L     | T/bn       | mg/L      | mg/L     |  |
| BERYLIUM | BORON   | BORON Dissolved | CHLORIDE | COLOR   | FLUORIDE                              | Residue Filterable ( | Residue Non (SS) | Residue | Residue Volatile | Specfic Conductance | CIT DAME | SOURFILE | SORFACTANTS | TURBIDITY | COBALT | MOLYBDENUM | TITANIUM | VANADIUM   | ALK TOTAL | SULFIDES |  |
|          |         |                 |          |         |                                       |                      |                  |         |                  |                     |          |          |             |           |        |            | _        | - <b>-</b> |           |          |  |

|   | ८ रामक ११                |        |          | AVERAGE        |
|---|--------------------------|--------|----------|----------------|
|   | POT EXTR HYD             |        | 9.40     | 9.40           |
|   | CHEMICAL OXYGEN DEMAND   | PG/L   | 900.006  | 00.006         |
|   | BIOCHEMICAL OKYGEN DEPAN | MG/L   | 467.00   | 467.00         |
|   | TOTAL ORGANIC CARBON     | EG.    |          | ERR            |
|   | OIL & GREASE             | mg/L   | 9.60     | 09.6           |
|   | AMEDITA                  | mq/L   |          | ERR            |
|   | NITRATE                  | EG/L   |          | ERR            |
|   | NITRITE                  | May 7. |          | EERR           |
|   | TOTAL KJELDAHL NITROGEN  | mq/L   |          | ERR            |
|   | PROSPHORUS ortho PO4     | P. C.  |          | ERR            |
|   | PHOSPHORUS               | 72     |          | ERR            |
|   | CYANIDE                  | mg/L   |          | ERR            |
|   | CYANIDE free             | Type:  |          | ERR            |
|   | PHENOLS (EPA 604)        |        |          | ERR            |
|   | _                        |        | 28.00    | 28.00          |
|   | ARSENIC                  | ng/L   | <100     | <100           |
|   | BARIUM                   |        | <100     | <b>100</b>     |
|   | CADMIUM                  |        | <100     | <b>&lt;100</b> |
|   | CHROMIUM                 |        | <100     | <100           |
|   | CHROMIUM Hexavalent      |        |          | ERR            |
|   | COPPER                   | ng/L   | <100     | <100           |
|   | IRON                     | ng/L   | 3083.00  | 3083.00        |
|   | LEAD                     | ng/L   | 31.00    | 31.00          |
|   | MANCANESE                | ng/L   | 163.00   | 163.00         |
|   | MERCURY                  | 邓元     | <b>1</b> | 7              |
|   | NICKEL                   | ng/L   | <100     | 001>           |
|   | SELENIUM                 | ng/L   | <10      | <10            |
|   | SILVER                   | ng/L   | <10      | <10            |
|   | ZINC                     | ng/L   | 311.00   | 311.00         |
|   | CALCTUM                  | 五九四    | 53.40    | 53.40          |
|   | MAGNESTUM                | 五石     | 9.40     | 9.40           |
|   | POTASSIUM                | ng/L   |          | ERR            |
| • | SODIUM                   | mg/L   |          | ERR            |
|   | ICP METALS               | ng A.  | 263.00   | 263.00         |
|   | ALCELIANCE:              | y<br>i | )<br>)   | 1              |

SITE 11 CONTINUED

|    | BERYLIUM                 | ng/L         | <100          | ERR           |
|----|--------------------------|--------------|---------------|---------------|
|    | BORON                    | 7/bn         |               | ERR           |
|    | BORON Dissolved          | 7/bn         |               | ERR           |
|    | CHLORIDE                 |              |               | ERR           |
|    | COLOR                    | 8            |               | ERR           |
|    | FLUORIDE                 | mq/L         |               | ERR           |
|    | Residue Filterable (TDS) | ng/L         |               | ERR           |
|    | Residue Non (SS)         | Ind/L        |               | ERR           |
|    |                          | Ing/L        |               | ERR           |
|    | Residue Volatile         | ng/L         |               | ERR           |
|    | Specfic Conductance      | III / Dia    |               | ERR           |
|    | SULFATE                  | mg/L         |               | ERR           |
|    | SURFACTANTS              | E L          | 150.00        | 150.00        |
|    | TURBIDITY                | 2            |               | ERR           |
|    | COBALT                   | ng/L         | <100          | <100          |
|    | MOLYBDENUM               | ng/L         | <100          | <100          |
| 11 | TITANIUM                 | 7/bn         | <100          | <100          |
| 0  | VANADIUM                 | ng/L         | <100          | <100          |
|    | ALK TOTAL                | Ind/L        |               | ERR           |
|    | SULFIDES                 | EQ/L         |               | ERR           |
|    | METHYLENE CHLORIDE       | 7/bn         | 5.90          | 5.90          |
|    | 601                      |              |               |               |
|    | BROMODICHLOROMETHANE     | Incq/L       | <b>4.</b> 4   | 4.7           |
|    | BROMOFORM                | mcg/L        | <b></b> >     | <b>&lt;.7</b> |
|    | BROMOMETHANE             | mcg/L        | 6.>           | 6.>           |
|    | CARBON TETRACHLORIDE     | ECG/L        | <b>&lt;.5</b> | 5.5           |
|    | CHLOROBENZENE            | acg/L        | 9.>           | <b>9.</b> >   |
|    | CHLOROETHANE             | <b>BCG/L</b> | 6.>           | 6.>           |
|    | 2-CHLOROETHYIVINYL ETHER | mcg/L        | 6.>           | 6.>           |
|    | CHLOROFORM               | ECG/L        | <b>&lt;.3</b> | £.>           |
|    | CHLOROMETHANE            | mcg/L        | 8.>           | &.<br>%       |

9

AVERAGE

|    | DIBERCHOCHLOROMETHANE      | mcq/L  | 6.>            | • | <b>~</b>            |
|----|----------------------------|--------|----------------|---|---------------------|
|    | 1,2-DICHLOROBENZENE        | ECG/L  | ₽              | ▽ | ದ                   |
|    | 1,3-DICHLOROBENZENE        | mcg/L  | <b>&lt;.</b> 5 | • | ~                   |
|    | 1,4-DICHLOROBENZENE        | mcg/L  | <b>6.7</b>     | • | <b>\</b>            |
|    | DICHLORODI PLUOROMETHANE   | ECG/L  | 6.>            | • | $\ddot{\mathbf{z}}$ |
|    | 1,1-dichoroethane          | ECG/L  | <b>4.4</b>     | • | ;                   |
|    | 1,2-DICHLOROETHANE         | mcg/L  | <b>&lt;.3</b>  | • | ~                   |
|    | 1,1-DICHLOROETHENE         |        | <b>&lt;.3</b>  | • | <b>;</b>            |
|    | TRANS-1, 2-DICHLOROETHENE  |        | <b>&lt;.</b> 5 | • | ~                   |
|    | 1,2-DICHLOROPORPANE        |        | <b>&lt;.3</b>  | • | Ÿ                   |
|    | CIS-1, 3-DICHLOROPROPENE   | ECG/L  | <b>&lt;.5</b>  | • | <u>;</u>            |
|    | TRANS-1, 2-DICHLOROPROPEN  |        | <b>&lt;.</b> 5 | • | ~                   |
|    | METHYLENE CHLORIDE         |        | <b>**</b>      | • | `.                  |
|    | 1,1,2,2-TETRACHLOROETHAN   |        | <b>&lt;.</b> 5 | • | ~                   |
|    | <b>TETRACHLOROETHYLENE</b> |        | 9.5            | • | <b>~</b>            |
| 1: | 1,1,1-TRICHLOROETHANE      | mcg/L  | <.5            | • | 3                   |
| 11 | 1,1,2-TRICHLOROETHANE      | Incg/L | <b>&lt;.</b> 5 | • | <u>.</u>            |
|    | TRICHLOROETHYLENE          | ECG/L  | <b>&lt;.</b> 5 | • | <b>~</b>            |
|    | TRICHLOROLUOROMETHANE      | mcg/L  | <b>4.4</b>     | • | <b>;</b>            |
|    | VINYL CHLORIDE             | mcg/L  | 6.>            | • | <b>*</b>            |
|    | 602                        | mcq/L  |                |   |                     |
|    | BENZENE                    | mcq/L  | <b>&lt;.</b> 5 | • | ~                   |
|    | CHLOROBENZENE              | mcg/L  | <b>*.</b> 6    | • | ÷                   |
|    | 1,2-pichlorobenzene        | Incg/L | ₽              | ▽ | T                   |
|    | 1,3-DICHLOROBENZENE        | mcg/L  | <b>^.</b> 5    | • | ~<br>~              |
|    | 1,4-dichlorobenzene        | mcg/L  | <b>&lt;.7</b>  | • | <b>~</b>            |
|    | ETHYLBENZENE               | ECG/L  | ו3             | • | V                   |
|    | TOLUENE                    | mcg/L  | <b>6.3</b>     | • | •                   |

 $\alpha$ 

no nrmm

| SITE 12                  | <b>t</b> | 00 613           | AVERAGE<br>512 00                     |
|--------------------------|----------|------------------|---------------------------------------|
| FOI EAST MID             |          | 0777<br>45000 00 | 00.216                                |
| BIOCHEMICAL OXYGEN DEMAN |          | 35027.00         | 35027.00                              |
| IOTAL ORGANIC CARBON     | 7,50     |                  | ERR                                   |
| OIL & GREASE             |          | 912.00           | 912.00                                |
| APPIONIA                 | 邓九       |                  | ERR                                   |
| NITRATE                  | 邓元       |                  | ERR                                   |
| NITRITE                  | 邓元       |                  | ERR                                   |
| TOTAL KJELDAHL NITROGEN  |          |                  | ERR                                   |
| PHOSPHORUS ortho PO4     | 7/5      |                  | ERR                                   |
| PHOSPHORUS               | mg/L     |                  | ERR                                   |
| CYANIDE                  | mg/L     |                  | ERR                                   |
| CYANIDE free             | EG/L     |                  | ERR                                   |
| PHENOLS (EPA 604)        | ng/L     |                  | ERR                                   |
| PHENOLS (MTH. 420)       | ng/L     | 1150.00          | 1150.00                               |
| ARSENIC                  | 7<br>S   | <100             | <100                                  |
| BARIUM                   | ng/T     | 198.00           | 198.00                                |
| CADMIUM                  | ng/L     | <100             | <100                                  |
| CHROMITUM                | ng/L     | <100             | <100                                  |
| THROWIUM Hexavalent      | ng/T     |                  | ERR                                   |
| <b>COPPER</b>            | ng/F     | <100             | <100                                  |
| CRON                     | ng/L     | 3596.00          | 3596.00                               |
| LEAD                     | ng/T     | 23.00            | 23.00                                 |
| PANCANESE                | ng/L     | 112.00           | 112.00                                |
| TERCURY                  | 7/bn     | 4                | ₽                                     |
| VI CKEL                  | ng/T     | <100             | <100                                  |
| SELENTUM                 | ng/T     | <10              | <10                                   |
| SILVER                   | ng/L     | 138.00           | 138.00                                |
| ZINC                     | 7/gn     | 2007.00          | 2007.00                               |
| ALCTUM                   | mg/L     | 44.60            | 44.60                                 |
| SACNESTUM                | mg/L     | 84.90            | 84.90                                 |
| OTASSIUM                 | ng/L     |                  | ERR                                   |
|                          | mg/L     |                  | ERR                                   |
| ICF METALS<br>LUMINUM    | ng/L     | 184.00           | 184.00                                |
|                          | <br> -   |                  | F F F F F F F F F F F F F F F F F F F |

| 6 | 3 |  |
|---|---|--|
|   |   |  |
|   |   |  |
| Ť |   |  |
|   |   |  |

|    | SITE 12 CONTINUED      |                                               |        | AVI | AVERAGE      |
|----|------------------------|-----------------------------------------------|--------|-----|--------------|
|    |                        | 110 A.                                        | <100   | •   | <100         |
|    | PODON.                 | מק"ר.                                         | }      |     | ERR          |
|    |                        | 107                                           |        |     | ERR          |
|    | CHI COTTO              |                                               |        |     | ERR          |
|    | CHILDE                 | ֓֞֜֝֞֜֜֝֓֓֓֓֓֞֜֜֞֓֓֓֓֞֜֜֓֓֓֓֞֜֓֓֡֓֞֜֜֓֓֡֓֞֜֜֡ |        |     | ERR          |
|    | er months              |                                               |        |     | ERR          |
|    | rice rilterable (mS)   | 1207                                          |        |     | ERR          |
|    | Mesidue Firefunt (122) |                                               |        |     | ERR          |
|    | Residue Mar (22)       |                                               |        |     | ERR          |
|    | Residue Volatile       | 7/0                                           |        |     | ERR          |
|    | Specfic Conductance    |                                               |        |     | ERR          |
|    | CHERMINE               | ma/L                                          |        |     | ERR          |
|    | CIBERTANTS             | Ed/L                                          | 300.00 |     | 300.00       |
|    | TATES TOTAL            | 12                                            |        |     | ERR          |
|    | COSSIGN                | ng/L                                          | <100   |     | <100         |
|    | MOT VEDENTIN           | ng/L                                          | 702.00 |     | 702.00       |
| 11 | TTTANTIM               | ng/L                                          | <100   |     | <100         |
| .3 | VANADITIM              | ng/L                                          | <100   |     | <100         |
|    | ALK TIOTAL             | IIQ/L                                         |        |     | ERR          |
|    | CIL PIDES              |                                               |        |     | ERR          |
|    |                        | À                                             |        |     | ERR          |
|    | 1,2-DICHLOROETHANE     | J/gn                                          | 7.40   |     | 7.40<br>8.10 |
|    | METHYLENE CRICKLEE     | 1<br>20                                       | 9      |     |              |

| SITE 13                  |         |          | AVERAGE       |
|--------------------------|---------|----------|---------------|
| POT EXTR HYD             | 1/bu    | 0.60     | 09.0          |
| CHEMICAL OXYGEN DEMAND   |         | 500.00   | 200.00        |
| BIOCHEMICAL OXYGEN DEMAN |         | 17.00    | 17.00         |
| TOTAL ORGANIC CARBON     | T/bm    |          | ERR           |
| OIL & GREASE             | T/ba    | 09.0     | 09.0          |
| APPONIA                  | 7/50    |          | ERR           |
| NITRATE                  | Ind/L   |          | ERR           |
| NITRITE                  | IIQ7    |          | ERR           |
| TOTAL KJELDAHL NITROGEN  |         |          | ERR           |
| PHOSPHORUS ortho PO4     | 7/50    |          | ERR           |
| PHOSPHORUS               | I Da    |          | ERR           |
| CYANIDE                  | T/Dat   |          | ERR           |
| CYANIDE free             | II DIII |          | ERR           |
| PHENOLS (EPA 604)        | T/bn    |          | ERR           |
| PHENOLS (MTH. 420)       | ng/L    | <10      | <10           |
| ARSENIC:                 | ng/L    | <100     | <100          |
| BARIUM                   | ngÆ     | <100     | <100          |
| CADMITUM                 | ngÆ     | <100     | <100          |
| CHROMITUM                | ng/T    | <100     |               |
| CHROMIUM Hexavalent      | ng/T    |          | ERR           |
| COPPER                   | ng/T    | <100     | <100          |
| IRON                     | 7Zbn    | 271.00   | 271.00        |
| LEAD                     | ng/T    | <20      | <b>&lt;20</b> |
| MANCANESE                | ng/T    | <100     | <100          |
| MERCURY                  | 阿九      | <b>▽</b> | <b>1</b>      |
| NICKEL                   | 7/bn    | <100     | <100          |
| SELENTUM                 | ng/T    | <10      | <10           |
| SILVER                   | 7/bn    | 27.00    | 27.00         |
| ZINC                     | 7/bn    | <100     | <100          |
| CALCTUM                  | mg/L    | 51.80    | 51.80         |
| MAGNESIUM                | T/Dat   | 10.60    | 10.60         |
| POTASSIUM                | ng/L    |          | ERR           |
| SODIUM                   | ng/L    |          | ERR           |
| ICP METALS ALIMINATE     | יום ק.  | <100     | <100 <100     |
|                          | i<br>A  |          |               |

| B      |
|--------|
| ⊇      |
| SONTEN |
| m      |
| -      |
| SITE   |

| BERYLIUM BORON BORON Dissolved CHLORIDE COLOR FILUCRIDE Residue Filterable (TDS) Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES 1,2-DICHLOROETHANE METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE BENZENE |                                  | <100 <100 <100 <100 <100 <100 <100 <100 | C100 EERR EERR EERR EERR EERR EERR EERR EE |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------------|
| BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBETHANE                                                                                                                                                                                                    | acg/L<br>acg/L<br>acg/L<br>acg/L | *                                       | 4                                          |

| 6.9<br>6.9<br>6.5<br>6.5<br>7.5                                                                                                                       | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^                                                                                                                                                                                               | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6; 5<br>6; 5<br>7; 5<br>7; 5<br>7; 5                                                                                                                  | o 4 w w w w w w w                                                                                                                                                                                                                   | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^                                                                                                                               | 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| THER BCG/L BCG/L BCG/L BCG/L BCG/L                                                                                                                    |                                                                                                                                                                                                                                     | N                                                                                                                                                                   | ECG A PLOCATE BECG A |
| 2-CHLOROETHYTVINYL ETHER<br>CHLOROFORM<br>CHLOROMETHANE<br>DIBEROMOCHLOROMETHANE<br>1,2-DICHLOROBENZENE<br>1,3-DICHLOROBENZENE<br>1,4-DICHLOROBENZENE | DICHLORODIFIJOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPORPANE CIS-1,3-DICHLOROPROPENE TRANS-1,2-DICHLOROPROPENE TRANS-1,2-DICHLOROPROPENE TRANS-1,2-DICHLOROPROPENE | 1,1,2,2-TETRACHLOROETHAN TETRACHLOROETHYLENE 1,1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROLUGROMETHANE VINXL CHLORIDE | 602 BENZENE CHLOROBENZENE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE ETHYLBENZENE TOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                       |                                                                                                                                                                                                                                     | 116                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| AVERACE | 8.40         | 200.00                 | 86.00                    | ERR                  | 42.00        | ERR     | ERR     | ERR     | ERR                     | ERR                  | ERR        | ERR     | ERR          | ERR               | 28.00              | <100    | <b>&lt;100</b> | <b>&lt;100</b> | <100     |                     | <100   | 579.00 | 250  | <100      | 7;      | 001>   | \$10<br>\$10  | <10           | 001> | 54.60   | 8.80      | ERR       | EKR    | ag.a |
|---------|--------------|------------------------|--------------------------|----------------------|--------------|---------|---------|---------|-------------------------|----------------------|------------|---------|--------------|-------------------|--------------------|---------|----------------|----------------|----------|---------------------|--------|--------|------|-----------|---------|--------|---------------|---------------|------|---------|-----------|-----------|--------|------|
|         | 8.40         | 500.00                 | 86.00                    |                      | 42.00        |         |         |         |                         |                      |            |         |              |                   | 28.00              | <100    | <100           | <100           | <100     |                     | <100   | 579.00 | <20  | <100      | ₽       | <100   | <b>&lt;10</b> | <b>&lt;10</b> | <100 | 54.60   | 8.80      |           |        |      |
|         |              | 17/00                  |                          |                      | 17/011       | 7/00    | mg/L    |         | 7/5                     |                      | EQ.7.      | Ind/L   | ING/L        | 7/bn              | ng/I               | ng/L    | ng/L           | ng/L           | ng/L     | ng/T                | ng/T   | 7/5n   | ng/L | ng/L      |         | ng/L   | ng/I          | Ng/L          | Z/gn | 五石      |           | 7/5n      | mg/L   |      |
| SITE 14 | POT EXTR HYD | CHEMICAL OXYGEN DEMAND | BIOCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON | OIL & GREASE | AMPONIA | NITRATE | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS ortho PO4 | PHOSPHORUS | CYANIDE | CYANIDE free | PHENOLS (EPA 604) | PHENOLS (MTH. 420) | ARSENIC | BARIUM         | CADMIUM        | CHROMIUM | CHROMIUM Hexavalent | COPPER | IRON   | LEAD | MANCANESE | MERCURY | NICKEL | SETENION      | SILVER        | ZINC | CALCTUM | MAGNESTUM | POTASSIUM | SODIUM |      |

| CONTINUED |
|-----------|
| 14        |
| SITE      |

| BERYLIUM                 | nd/L  | <100           | <100           |
|--------------------------|-------|----------------|----------------|
| BORON                    | uq/I  |                | ERR            |
| BORON Dissolved          | ng/L  |                | ERR            |
| CHLORIDE                 | II V  | ,              | ERR            |
| COLOR                    | 8'    |                | ERR            |
| FLUORIDE                 | mq/L  |                | ERR            |
| Residue Filterable (TDS) |       |                | ERR            |
| Residue Non (SS)         |       |                | ERR            |
| Residue                  | mq/L  |                | ERR            |
| Residue Volatile         | mg/L  |                | ERR            |
| Specfic Conductance      | mg/L  |                | ERR            |
| SULFATE                  | mg/L  |                | ERR            |
| SURFACTANTS              | IIQ/L | 21.00          | 21.00          |
| TURBIDITY                | Ę     |                | ERR            |
| CORALT                   | ng/L  | <100           | <b>&lt;100</b> |
| MOLYBDENUM               | ng/L  | <100           | <b>&lt;100</b> |
| TITANIOM                 | ng/L  | <100           | <b>&lt;100</b> |
| VANADIUM                 | ng/L  | <100           | <100           |
| ALK TOTAL                | mg/L  |                | ERR            |
| SULFIDES                 | ng/L  |                | ERR            |
|                          |       |                | ERR            |
| 1,2-DICHLOROETHANE       | ng/L  | 896.00         | 896.00         |
| 1,3-DICHLOROBENZENE      | ng/L  | 2989.00        | 2989.00        |
| METHYLENE CHLORIDE       | ng/L  | 4.50           | 4.50           |
| 1,1,1-TRICHLOROETHANE    |       |                | ERR            |
| BENZENE;                 |       | 00             | 00 P           |
| THE CHECKOF ELONGETHANE  |       | 00.4           | ***            |
| ETHYL BENZENE            |       | 22.00          | 77.00          |
| 601                      |       |                |                |
| BROMODI CHLOROMETHANE    | mcg/L | <b>*.4</b>     | <b>4.4</b>     |
| BROMOFORM                | ECG/L | <b></b> >      | <b>7.</b> >    |
| BROMOMETHANE             | ECG/L | 6.>            | 6.>            |
| CARBON TETRACHLORIDE     | ncg/L | <b>&lt;.</b> 5 | <b>.</b> .5    |
| CHLOROBENZENE            | mcg/L | <b>9.</b> %    | 9.>            |

## SITE 14 CONTINUED

| <b>DIBEROMOCHI OROMETHANE</b> | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-dichlorobenzene | DICHLORODI FLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPORPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 2-DICHLOROPROPEN | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHAN |             | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROLUOROMETHANE | VINYL CHLORIDE | 602   | BENZENE | CHLOROBENZENE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | ETHYLBENZENE  | TOLUENE       |
|-------------------------------|---------------------|---------------------|---------------------|--------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|---------------------------|--------------------|--------------------------|-------------|-----------------------|-----------------------|-------------------|-----------------------|----------------|-------|---------|---------------|---------------------|---------------------|---------------------|---------------|---------------|
| ncg/L                         | Incg/L              | ECG/L               | Incg/L              | ECG/L                    | ECG/L              | mcg/L              | Incg/L             | Incg/L                    | mcg/L               | mcg/L                    | mcg/L                     | mcg/L              | ECG/L                    | Incg/L      | ECG/L                 | mcg/L                 | mcg/L             | mcg/L                 | mcg/L          | mcq/L | mcq/L   | mcg/L         | ECG/L               | ECG/L               | Incg/L              | mcg/L         | mcq/L         |
| 6.>                           | <b>4</b>            | <b>&lt;.5</b>       | <b>&lt;.7</b>       | 6.>                      | <b>4.</b>          | K.>                | <b>&lt;.3</b>      | <b>&lt;.</b> 5            | <b>6.3</b>          | <.5                      | <b>&lt;.</b> 5            | <b>4.4</b>         | <.5                      | <b>6.6</b>  | <.5                   | <b>&lt;.</b> 5        | <.5               | <b>4.4</b>            | 6.>            |       | <.5     | <b>9.</b> ×   | <b>&lt;</b> 1       | <b>&lt;.</b> 5      | <b>&lt;.7</b>       | <b>&lt;.3</b> | <b>&lt;.3</b> |
|                               |                     |                     |                     |                          |                    |                    |                    |                           |                     |                          |                           |                    |                          |             |                       |                       |                   |                       |                |       |         |               |                     |                     |                     |               |               |
| 5· <b>&gt;</b>                | ₽                   | ×.                  | \.\<br>             | \$.<br>•                 | <b>*.</b>          | ```                | ~                  | `\<br>\                   | ` <b>`</b>          | ~                        | •                         | <b>&gt;</b>        | ~                        | <b>&gt;</b> | ×                     | ~                     | ~                 | <b>*.</b>             | <b>;</b>       |       | · ·     | ÷.            | 7                   | ~                   | \.                  | ~             | ~             |

| į | 1 | į |   |
|---|---|---|---|
|   | į | į | ֡ |
| ļ |   |   |   |
| • | 9 | Ę |   |

|                                                                                                          | 1, , , , , , , , , , , , , , , , , , ,                                             | , , , , , , , , , , , , , , , , , , ,                                                                             | * * * * * * * * * * * * * * * * * * *                                                                                                                                                  | (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                         |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                          |                                                                                    |                                                                                                                   |                                                                                                                                                                                        |                                                                                    |
| o.o.m.æ.o.                                                                                               | i, ^ ^ ^ ^ /<br>7. 0. 4. 4                                                         |                                                                                                                   | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^                                                                                                                                                  | 5<br>5<br>3<br>3                                                                   |
|                                                                                                          |                                                                                    |                                                                                                                   | N mcg/L                                                                                                                                                                                | 7658<br>7658<br>7658<br>7658<br>7658<br>7658<br>7658<br>7658                       |
| CHLOROETHANE 2-CHLOROETHYIVINYL ETHER CHLOROPORM CHLOROMETHANE DIBEROMOCHLOROMETHANE 1 2-DICHLOROMETHANE | 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE DICHLORODIFIJOROMETHANE 1,1-DICHLOROETHANE | 1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPORPANE CIS-1,3-DICHLOROPROPENE TRANS-1,2-DICHLOROPROPENE | METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHAN TETRACHLOROETHYLENE 1,1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROLUOROMETHANE VINYL CHLORIDE | BENZENE CHLOROBENZENE 1,2-DICHLOROBENZENE 1,4-DICHLOROBENZENE ETHYLBENZENE TOLUENE |

| STME 15                  |         |        | AVERAGE        |
|--------------------------|---------|--------|----------------|
| POT EXTR HYD             |         | 1.30   | 1.30           |
| CHEMICAL OXYGEN DEMAND   | 7/5     | 500.00 | 200.00         |
| BIOCHEMICAL OXYGEN DEMAN |         | 129.00 | 129.00         |
| TOTAL ORGANIC CARBON     |         |        | ERR            |
| OIL & GREASE             |         | 3.40   | 3.40           |
| AMPONIA                  | IZ/Da   |        | ERR            |
| NITRAIE                  |         |        | ERR            |
| NITRITE                  | mg/L    |        | ERR            |
| TOTAL KJELDAHL NITROGEN  | T/but   |        | ERR            |
| PHOSPHORUS ortho PO4     | mg/L    |        | ERR            |
| PHOSPHORUS               | ng/L    |        | ERR            |
| CYANIDE                  | T/but   |        | ERR            |
| CYANIDE free             | EQ.     |        | ERR            |
| PHENOLS (EPA 604)        |         |        | ERR            |
| PHENOLS (MTH. 420)       |         | 183.00 | 183.00         |
| ARSENIC                  |         | <100   | <100           |
| BARIUM                   |         | <100   | <100           |
| CADMITUM                 |         | <100   | <b>&lt;100</b> |
| CHROMIUM                 |         | <100   | <100           |
| CHROMIUM Hexavalent      |         |        | ERR            |
| COPPER                   | ng/T    | <100   | <100           |
| IRON                     | ng/L    | 211.00 | 211.00         |
| LEAD                     | ng/L    | <20    | <b>\\$20</b>   |
| MANGANESE                | ng/L    | <100   | <100           |
| MERCURY                  | mg/L    | 1.70   | 1.70           |
| NICKEL                   | ng/L    | <100   | V100           |
| SELENIUM                 | 7/gn    | <10    | <b>410</b>     |
| SILVER                   | 77<br>M | <10    | <b>10</b>      |
| ZINC                     | 7/bn    | <100   | <b>&lt;100</b> |
| CALCTUM                  |         | 54.80  | 54.80          |
| MAGNESTUM                | mg/L    | 10.70  | 10.70          |
| POTASSIUM                | ng/L    |        | ERR            |
| SODIUM                   | EG/L    |        |                |
| ICP METALS               |         |        | ERR            |
| ALUMINUM                 | ng/L    | 104.00 | 104.00         |

| 8  |
|----|
| 3  |
| E  |
| 8  |
| 'n |
| _  |
| E  |
| H  |
| S  |

| AVERAGE           | <pre>&lt;100 570.77</pre>                                                                                                                                                                                                     | ERR 4.70 ERR ERR ERR ERR 2.40                                                                                                         | 4. >                                                                          |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                   | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L                                                                                                                                                                                       | ug/L<br>ug/L<br>ug/L 14.00<br>ug/L 14.00                                                                                              | mcg/L <.4<br>mcg/L <.7<br>mcg/L <.9<br>mcg/L <.5                              |
| SITE 15 CONTINUED | BERYLIUM BORON Dissolved CHLORIDE COLOR FLUORIDE Residue Filterable (TDS) URESidue Non (SS) Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL | 1,2-DICHLOROETHANE 1,3-DICHLOROBENZENE NETHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE BENZENE TRICHLOROFLUOROMETHANE ETHYL BENZENE TOLLIENE | 601 BROMODICHLOROMETHANE II BROMOPORM BROMOMETHANE II CARBON TETRACHLORIDE II |

|    | CHLOROBENZENE                 | mcg/L  | 9.>            | <b>9.</b>     | 10       |
|----|-------------------------------|--------|----------------|---------------|----------|
|    | CHLOROETHANE                  | mcg/L  | 6.>            | 6.>           | _        |
|    | 2-CHLOROETHYIVINYL ETHER      | mcg/L  | 6.>            | 6.>           | <b>~</b> |
|    | CHLOROFORM                    | mcg/L  | <b>&lt;.3</b>  | <b>6.3</b>    | ~        |
|    | CHLOROMETHANE                 | mcg/L  | <b>8.</b>      | 8.8           | ~        |
|    | <b>DIBEROMOCHI OROMETHANE</b> | mcg/L  | 6.>            | 6.9           | _        |
|    | 1,2-dichlorobenzene           | ECG/L  | ₽              | マ             |          |
|    | 1,3-DICHLOROBENZENE           | mcg/L  | <b>&lt;.5</b>  | <b></b> 5     |          |
|    | 1,4-DICHLOROBENZENE           | mcg/L  | <b>6.7</b>     | <b>C.&gt;</b> | _        |
|    | DICHLORODI FLUOROMETHANE      | ECG/L  | 6.>            | 6.>           | σ.       |
|    | 1,1-DICHLOROETHANE            | mcg/L  | <b>*.</b> *    | <b>4.4</b>    | ₩        |
|    | 1,2-DICHLOROETHANE            | ECG/L  | <b>&lt;.3</b>  | .3            | ~        |
|    | 1,1-DICHLOROETHENE            | ECG/L  | <b>&lt;.3</b>  |               | ~        |
|    | TRANS-1, 2-DICHLOROETHENE     | ECG/L  | <b>&lt;.</b> 5 | \$.5          | ın       |
|    | 1,2-DICHLOROPORPANE           | ECG/L  | <b>&lt;.3</b>  | £.3           | ~        |
|    | CIS-1, 3-DICHLOROPROPENE      | ECG/L  | · · · 5        | <b>6.</b> 5   | 'n       |
| 1  | TRANS-1, 2-DICHLOROPROPEN     | ECG/L  | <b>&lt;.</b> 5 | .5<br>.5      | ın       |
| 24 | METHYLENE CHLORIDE            | ECG/L  | <b>*.4</b>     | <b>*.</b>     | ₹#       |
| ļ  | 1,1,2,2-TETRACHLOROETHAN      | mcg/L  | <b>&lt;.</b> 5 | \$ <b>*</b>   | ın       |
|    |                               | ECG/L  | 9.>            | <b>~.</b> 6   | SO.      |
|    | 1,1,1-TRICHLOROETHANE         | mcg/L  | <b>&lt;.5</b>  |               |          |
|    | 1,1,2-TRICHLOROETHANE         | mcg/L  | <b>&lt;.</b> 5 | <.5           | 10       |
|    | TRICHLOROETHYLENE             | mcg/L  | <b>&lt;.</b> 5 | 5             | 10       |
|    | TRICHLOROLUOROMETHANE         | ECG/L  | <b>***</b>     | •••           | **       |
|    | VINYL CHLORIDE                | mcg/L  | 6.>            | 6.>           | <b>a</b> |
|    | 602                           | mcq/L  |                |               |          |
|    | BENZENE                       | mcg/L  | <b>&lt;.</b> 5 | <.5           | 10       |
|    |                               | IICG/L | 9*>            | <b>9.</b>     | 10       |
|    |                               | ECG/L  | ₽              | ₽             |          |
|    |                               | mcg/L  | <b>&lt;.</b> 5 | <.5           |          |
|    | BENZENE                       | ECG/L  | ·.7            | <b>7.</b> >   | _        |
|    | ETHYLBENZENE                  | ncg/L  |                |               | m        |
|    | TOLUENE                       | mcg/L  | ٠.>            | <br>•         | ~        |

| POT EXTR HYD              |       | 0.60           | 26.90   | 1.00           | 5.10           | 0.90    | 2.90           |      | 6.23        |
|---------------------------|-------|----------------|---------|----------------|----------------|---------|----------------|------|-------------|
| CHEMICAL OXYGEN DEMAND    | III V | 390.00         | 275.00  | 170.00         | 300.00         | 375.00  | 350.00         |      | 310.00      |
| BIOCHEMICAL OXYGEN DEPAND |       | 47.00          | 84.00   | 82.50          | 58.00          | 51.00   | 49.00          |      | 61.92       |
| TOTAL ORGANIC CARBON      | 7/5   | 29.00          | 45.00   | 56.00          | 37.00          | 49.00   | 48.00          |      | 44.00       |
| OIL & CREASE              | 7/0   | 1.90           | 12.00   | 45.60          | 1.30           | 4.20    | 6.70           |      | 11.95       |
| AMONIA                    |       | 30.00          | 15.20   | 41.50          | 35.50          | 35.00   | 24.50          |      | 30.28       |
| NITRATE                   | EQ7.  | 0.10           | 0.10    | 0.10           | 0.10           | 0.10    | <b>&lt;.1</b>  |      | 0.10        |
| NITRITE                   | mg/L  | <.02           | <.02    | <.02           | <.02           | <.02    | <.02           |      | <.02        |
| TOTAL KJELDAHL NITROGEN   | Ind/L | 34.40          | 18.40   | 42.00          | 39.20          | 40.00   | 32.80          |      | 34.47       |
| PHOSPHORUS orthoPO4       | Ind/L | 3.40           | 3.40    | 4.00           | 4.40           | 3.80    | 3.25           |      | 3.71        |
| PHOSPHORUS                | IIQ/L | 10.00          | 11.00   | 8.50           | 13.00          | 6.50    | 4.40           |      | 8.90        |
| CYANIDE                   | IIQ/L | 0.01           | 0.00    | 0.02           | 0.01           | 0.01    | 0.01           |      | 0.01        |
| CYANIDE free              | IIQ/L |                |         |                |                |         |                |      | ERR         |
| PHENOLS (EPA 604)         | 7/bn  | 6.90           | 6.90    |                |                |         |                |      | 6.90        |
|                           | ng/L  | 15.00          | 27.00   | 34.00          | 20.00          | 25.00   | 10.00          | 6.90 | 19.70       |
| ARSENIC                   | 7/bn  | <100           | <100    | <100           | <100           | <100    | <100           |      | <100        |
| BARIUM                    | 7/bn  | <100           | <100    | <100           | 143.00         | <100    | <100           |      | 143.00      |
| CADMIUM                   | 7/bn  | <100           | <100    | <100           | <100           | <100    | <100           |      | <100        |
| CHROMIUM                  | 7/bn  | <100           | <100    | <100           | <100           | <100    | <100           |      | <100        |
| CHROMIUM HEXAVALENT       | 7/bn  | <b>&lt;</b> 20 | <50     | <b>&lt;</b> 20 | <b>&lt;</b> 50 | <50     | <b>&lt;</b> 20 |      | <b>~</b> 20 |
| COPPER                    | 7/bn  | <100           | <100    | <100           | <100           | <100    | <100           |      | <100        |
| IRON                      | 7/bn  | 252.00         | 1844.00 | 1643.00        | 506.00         | 3489.00 | 400.00         |      | 1355.67     |
| LEAD                      | ng/L  | 65.00          | 31.00   | <20            | <20            | <20     | <20            |      | 48.00       |
| MACANESE                  | ng/L  | <100           | <100    | <100           | <100           | <100    | <100           |      | <100        |
| MERCURY                   | ng/L  | 1.90           | 1.70    | 1.20           | ₽              | ₽       | な              |      | 1.60        |
| NICKEL                    | ng/L  | <100           | <100    | <100           | <100           | <100    | <100           |      | <100        |
| SELENTUM                  | ng/L  | <100           | <10     | <b>&lt;10</b>  | <10            | <10     | <10            |      | <10         |
| SILVER                    | 7/bn  | 19.00          | 10.00   | <10            | <10            | <10     | <10            |      | 14.50       |
| ZINC                      | ng/L  | 129.00         | 383.00  | 148.00         | 438.00         | <100    | <100           |      | 274.50      |
| CALCTUM                   | mg/L  | 53.90          | 51.60   | 53.50          | 62.00          | 51.20   | 54.90          |      | 54.52       |
| MAGNESTUM                 | mg/L  | 9.60           | 9.60    | 9.40           | 10.40          | 9.10    | 9.50           |      | 9.60        |
| POTASSIUM                 | 五万里   |                |         |                |                |         |                |      | ERR         |
| SODIUM                    | mg/L  |                |         |                |                |         |                |      | ERR         |
| ICP TOTALS                |       |                |         |                |                |         |                |      | ERR         |
| ALUMINOM                  | ng/L  | 114.00         | 407.00  | 123.00         | 1022.00        | <100    | <100           |      | 416.50      |
|                           |       |                |         |                |                |         |                |      |             |

| BERYLIUM | ng/L | <100 | <100 | <100    | <100 | <100  | 7 |
|----------|------|------|------|---------|------|-------|---|
|          |      |      | 000  | מט כשרנ | 2200 | 21.00 | ٦ |

SITE 16 CONTINUED

|    | BERYLIUM                   | ng/L         |         | <100   | <100    | <100    | <100    | <100    | <100         |
|----|----------------------------|--------------|---------|--------|---------|---------|---------|---------|--------------|
|    | BORON                      | 7<br>Ton     | 2800.00 | 800.00 | 3250.00 | 3250.00 | 2100.00 | 1200.00 | 2233.33      |
|    | BORON DISSOLVED            | 7/bn         |         |        |         |         |         |         | ERR          |
|    | CHLORIDE                   | <b>5</b> 5   | 76.00   | 13.00  | 37.00   | 39.00   | 41.00   | 29.00   | 39.17<br>ERR |
|    | FLOURIDE                   | Ind/L        |         |        |         |         |         |         | ERR          |
|    | RESIDUE FILTERABLE (TDS)   | 7/201        | 552.00  | 330.00 | 650.00  | 465.00  | 240.00  | 428.00  | 444.17       |
|    | RESIDUE NON (SS)           | 四元           | 524.00  |        |         |         |         |         | 524.00       |
|    | RESIDUE                    | 7/201        | 520.00  | 431.00 | 557.00  | 456.00  | 500.00  |         | 492.80       |
|    | RESIDUE VOLATILE           | EG/L         | 102.00  | 34.00  | 118.00  | 133.00  | 177.00  | 264.00  | 138.00       |
|    | SPECIFIC CONDUCTANCE       | PMHO<br>PMHO | 982.00  | 590.00 | 941.00  | 1031.00 | 874.00  | 772.00  | 865.00       |
|    | SULFATE                    |              | 73.00   | 67.00  | 90.00   | 40.00   | 44.00   | 73.00   | 64.50        |
|    | SURFACTANTS                | 7/50         | 7.60    | 0.10   | 5.60    | 5.70    | 22.00   | 00.9    | 7.83         |
|    | TURBIDITY                  | 5            |         |        |         |         |         |         | ERR          |
|    | CORALT                     | 7/bn         | <100    | <100   | <100    | <100    | <100    | <100    | <100         |
|    | MOLYBDENUM                 | ng/L         | 129.00  | 348.00 | 271.00  | 201.00  | 549.00  | <100    | 299.60       |
|    | TITANIUM                   | ng/L         | <100    |        | <100    | <100    | <100    | <100    | <100         |
| 12 | VANADIUM                   | ng/L         | <100    |        | <100    | <100    | <100    | <100    | <100         |
| 26 | ALK TOTAL                  | 17/02/1      | 279.00  | 219.00 | 304.00  | 373.00  | 309.00  | 272.00  | 292.67       |
|    | SULFIDES                   | Ing/L        | 1.00    |        | 0.40    | 1.00    | 3.00    |         | 1.28         |
|    |                            |              |         |        |         |         |         |         | ERR          |
|    | CHLOROETHANE               |              | 0.90    |        |         |         |         |         | 0.00         |
|    | CHLOROFORM                 |              |         |        |         |         |         |         | ERR          |
|    | CHLOROMETHANE              | 7/bn         | 32.00   |        |         |         |         |         | 32.00        |
|    | CHLORIDBROMETHANE          | ng/L         |         |        |         |         |         |         | ERR          |
|    | DI-n-BUTYLPHTHALATE        | ng/T         | 2.90    | 2.90   |         |         |         |         | 2.90         |
|    | BENZYL-BUTYLPHTHALATE      | 7<br>Jon     | 10.00   | 10.00  |         |         |         |         | 10.00        |
|    | NAPTHALENE                 |              | 9.60    |        |         |         |         |         | 9.60         |
|    | BIS(2-ETHYLHEXYL) PHTHALAT |              | 42.00   | 42.00  |         |         |         |         | 42.00        |
|    | TRANS-1, 2-DICHLORETHENE   | ng/L         | 1.80    |        |         |         |         |         | 1.80         |
|    | METHYLENE CHLORIDE         | nd/L         | 1.90    | 7      |         |         |         |         | 1.90         |
|    | TETRACOLOGICAL             |              | >0.0    | > .    |         |         |         |         | 0.10         |

SITE 16 CONTINUED

9.60 42.00 1.80 1.90 0.75 64.00 7.09 3.00

|                                                                                                                             | 1.00 2.20 7.70 3.20                                                    | AVERAGE | <b>*.4</b>            | <b>C.</b> > | 6.>          | <b>*.</b> 5          | 9*>           | 8.>          | 6.>                      | <b>&lt;.</b> 3 | 8.*             | 6.>                  | <1                  | <b>&lt;.5</b>       | <b>L.&gt;</b>       | 6.>                       | <b>4.4</b>         | <b>&lt;.</b> 3     | <b>&lt;.</b> 3     | <b>^.</b> 5               | <b>&lt;.</b> 3      | <b>&lt;.</b> 5           | <b>&lt;.</b> 5             | 4.4                | 9*>                       |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------|-----------------------|-------------|--------------|----------------------|---------------|--------------|--------------------------|----------------|-----------------|----------------------|---------------------|---------------------|---------------------|---------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|----------------------------|--------------------|---------------------------|
| 9.60<br>42.00<br>1.80<br>1.90<br>0.80<br>0.70                                                                               | 64.00<br>31.00<br>2.10<br>3.00                                         | AVE     | <b>***</b>            |             |              |                      |               |              |                          |                |                 |                      |                     |                     |                     |                           |                    |                    |                    |                           |                     |                          |                            |                    |                           |
| · · · · ·                                                                                                                   | Ton I                                                                  |         | INE mcg               | mcg         | mcg          |                      | mcg           | BCG          |                          | ncg            | mc <sub>g</sub> | ы                    |                     |                     |                     |                           |                    | incg incg          |                    |                           |                     |                          | 邕                          |                    |                           |
| NAPTHALENE<br>BIS(2-ETHYLHEKYL) PHTHALAT<br>TRANS-1,2-DICHLORETHENE<br>METHYLENE CHLORIDE<br>TETRACHLOROETHYLENE<br>BENZENE | 1,3-dichlorobenzene<br>1,4-dichlorobenzene<br>ethyl benzene<br>Toluene | 601     | BROMODI CHLOROMETHANE | BROMOFORM   | BROMOMETHANE | CARBON TETRACHLORIDE | CHLOROBENZENE | CHLOROETHANE | 2-CHLOROETHYIVINYL ETHER | CHLOROFORM     | CHLOROMETHANE   | DIBROMOCHLOROMETHANE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | DI CHLORODI FLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 3-DICHLOROPROPENE | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHANE |

| SITE 16 CONTINUED                                                                                         |          |                                       | AVERAGE       |
|-----------------------------------------------------------------------------------------------------------|----------|---------------------------------------|---------------|
| 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE       | 100 a co | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | , , , , ,<br> |
| BENZENE CHLOROBENZENE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE ETHYLBENZENE TOLUENE |          | , ,                                   |               |

| 17   |
|------|
| SITE |

| 2.60<br>1081.67<br>149.83<br>90.00<br>7.47                                                             | 226.75<br><.02<br>41.33<br>3.77<br>8.83<br>0.01<br>ERR<br>39.00                           | 28.00<br>28.00<br>4100<br>4100<br>4100<br>67.00                               | <pre>&lt;100 &lt;100 &lt;100 &lt;100 57.60 9.88 ERR ERR ERR ERR</pre>                                                    |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                        |                                                                                           | 29.00                                                                         | 10.70                                                                                                                    |
| 1.60<br>2020.00<br>96.00<br>71.00<br>4.40                                                              | 0.12<br><.02<br>42.40<br>4.00<br>7.50<br>0.02                                             | 25.00<br><100<br><100<br><100<br><100<br><100<br><100<br><100<br><100<br><100 | (100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100                                                                     |
| 4.60<br>750.00<br>116.50<br>140.00<br>12.90                                                            | 680.00<br>22.40<br>2.50<br>3.00<br>0.00                                                   | (100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100                  | <ul> <li>&lt;100</li> <li>&lt;10</li> <li>&lt;10</li> <li>511.00</li> <li>55.20</li> <li>9.50</li> <li>482.00</li> </ul> |
| 1.60<br>475.00<br>237.04<br>59.00<br>5.10                                                              | 0.14<br><.02<br><.02<br>4.80<br>16.00<br>0.02                                             | 35.00<br>(100<br>(100<br>(100<br>(100<br>384.00<br>(100<br>(100               | 4.30<br><100<br><10<br>130.00<br>48.10<br>8.60                                                                           |
|                                                                                                        |                                                                                           |                                                                               | Ton                                                                                  |
| FOT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND TOTAL ORGANIC CARBON OIL & GREASE AMONIA | NITRATE NITRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS CYANIDE CYANIDE free PHENOLS (EPA 604) | ZE W.                                                                         | NICKEL SELENIUM SILVER ZINC CALCIUM MAGNESIUM FOTASSIUM SODIUM ICP TOTALS ALUMINUM                                       |

| SITE 1/ CONTINUED        |        |         |         |    |
|--------------------------|--------|---------|---------|----|
| BERYLIUM                 | ng/L   | <100    | <100    | 45 |
| BORON DISSOLVED          | a<br>T | 000.000 | 3330.00 | 7  |
| CHLORIDE                 | 17.5m  | 40.00   | 20.00   |    |
| COLOR                    | 8      |         |         |    |
| FLOURIDE                 | T/bu   |         |         |    |
| RESTRUE PITTERABLE (MAC) | 7      | מט אמא  | 456 00  | 'n |

| BERYLIUM                 | nq/L   | <100   | <100    | <100    |        | <100         |
|--------------------------|--------|--------|---------|---------|--------|--------------|
| BORON                    | T/bn   | 800.00 | 3550.00 | 2500.00 |        | 2283,33      |
| BORON DISSOLVED          | ng/L   |        |         |         |        | FRR          |
| CHLORIDE                 | mg/L   | 40.00  | 20.00   | 46.00   |        | 35.33        |
| COLOR                    | 8      |        |         |         |        | ERR          |
|                          | 7/ba   |        |         |         |        | ERR          |
| RESIDUE FILTERABLE (TDS) | Ing/L  | 585.00 | 456.00  | 325.00  |        | 455.33       |
| RESIDUE NON (SS)         | ING/L  | 29.00  |         |         |        | 29.00        |
| RESIDUE                  | Ind/L  | 639.00 | 601.00  |         |        | 620.00       |
| RESIDUE VOLATILE         | Ind/L  | 212.00 | 271.00  | 253.00  |        | 245,33       |
| SPECIFIC CONDUCTANCE     | MAHO   | 932.00 | 573.00  | 963.00  |        | 822.67       |
| SULFAITE                 | Ind/L  | 70.00  | 62.00   | 67.00   |        | 66.33        |
| SURFACTANTS              | IIIQ/I | 13.00  | 10.00   | 56.00   |        | 26.33        |
| TURBIDITY                | ,5     |        |         |         |        |              |
| COBALT                   | ng/L   | <100   | <100    | <100    |        | <100         |
| MOLYBDENUM               | nd/I   | 521.00 | 380.00  | <100    |        | 450.50       |
| TITANIUM                 | nd/I   | <100   | <100    | <100    |        | ×100         |
| VANADIUM                 | nd/L   | <100   | <100    | <100    |        | agii<br>Soli |
| ALK TOTAL                | Ind/L  | 323.00 | 240.00  | 333.00  |        | 298-67       |
| SULFIDES                 | mg/L   | 1.00   | 0.40    | 09.0    |        | 0.67         |
|                          |        |        |         |         |        | ERR          |
| CHLOROETHANE             |        |        |         |         |        | ERR          |
| CHICOROFORM              | ng/L   | 9.80   |         |         |        | 9.80         |
| CHLOROMETHANIE           |        | ,      |         |         |        | ERR          |
| CHLORIDEROMETHANE        |        | 0.50   |         |         |        | 0.50         |
| 1,4-DICHLOROBENZENE      | ng/I   | 7.30   | 7.30    | 7.30    | 100.00 | 30.48        |
| METHYLENE CHLORIDE       | ng/L   | 9.30   |         |         |        | 9.30         |
|                          |        | ,      |         |         |        | ERR          |
| BENZENE                  |        | 16.00  |         |         |        | 16.00        |
| I, 3-DICHLOROBENZENE     |        | 2.70   |         |         |        | 2.70         |
| ETHYL BENZENE<br>TOLINAE |        | 1.40   |         |         |        | 1.40         |
|                          |        |        |         |         |        |              |

SITE 17 CONTINUED

| AVERAGE | <b>4.</b>                   | <b>7.</b> > | 6.>          | <.5                  | 9.>           | 8,           | 6.>                      | <.3           | 8.>           | 6.>                  | 41                  | <.5                 | <b></b> >           | 6.9                            | 4.4                | <b>&lt;.3</b>      | <b>&lt;.3</b>      | <.5                       | <b>&lt;.3</b>       | <.5                      | <.5                        | <b>4.</b>          | <b>9.</b> *               | <.5                   | <.5                   | <.5               | 4.4                    | 6.>            |
|---------|-----------------------------|-------------|--------------|----------------------|---------------|--------------|--------------------------|---------------|---------------|----------------------|---------------------|---------------------|---------------------|--------------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|----------------------------|--------------------|---------------------------|-----------------------|-----------------------|-------------------|------------------------|----------------|
|         | <b>4.4</b>                  | <b>6.7</b>  |              | <b>&lt;.</b> 5       | <b>9</b> *>   | <b>8.</b>    | 6.>                      | <b>&lt;.3</b> | <b>8.</b> %   | 6.>                  | ₽                   |                     |                     |                                | <b>4.4</b>         | <b>&lt;.</b> 3     | <b>ć.</b> 3        | <b>&lt;.</b> 5            | <b>&lt;.3</b>       | <b>6.5</b>               | <b>&lt;.</b> 5             |                    | 9*>                       |                       | <b>&lt;.</b> 5        | <b>&lt;.</b> 5    | <b>4.4</b>             |                |
|         | BCG                         | BCG         | ECG.         | <b>BCG</b>           | <b>BCG</b>    | ECG.         | mcg                      | mcg.          | mcg           | ECG.                 | acg.                | <b>BC</b> g         | <b>Bcg</b>          | <b>BC</b> g                    | ECG.               | acg.               | acg                | ECG.                      | ECG.                | acg.                     | acg.                       | ECG.               | ECG.                      | ECG.                  | ECG.                  | <b>ac</b> g       | <b>acg</b>             | ncg            |
| 601     | <b>BRONODICHLOROMETHANE</b> | BROMOFORM   | BROMOMETHANE | CARBON TETRACHLORIDE | CHLOROBENZENE | CHLOROETHANE | 2-CHLOROETHYIVINYL ETHER | CHLOROFORM    | CHLOROMETHANE | DIBROMOCHLOROMETHANE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | <b>DICHLORODIFLUOROMETHANE</b> | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 3-DICHLOROPROPENE | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHANE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROFLUOROMETHANE | VINYL CHLORIDE |

| AVERAGE           | <ul> <li>&lt;.5</li> <li>&lt;.1</li> <li>&lt;.5</li> <li>&lt;.3</li> <li>&lt;.4</li> <li>&lt;.4</li> <li>&lt;.4</li> <li>&lt;.4</li> <li>&lt;.4</li> <li></li> <li>&lt;.4</li> <li>&lt;.4</li> <li>&lt;.4</li> <li>&lt;.4</li> <li></li> <li>&lt;.4</li> <li></li> <li>&lt;.4</li> <li></li> <li>&lt;.4</li> <li></li> <li>&lt;.4</li> <li></li> <li< th=""></li<></ul> |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 60 a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SITE 17 CONTINUED | BENZENE CHLOROBENZ ENE 1, 2-DI CHLOROBENZ ENE 1, 3-DI CHLOROBENZ ENE 1, 4-DI CHLOROBENZ ENE ETHYLBENZ ENE TOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

SITE 18

| ERR<br>425.00<br>25.00<br>30.00<br>3.00<br>20.50                                                       | 0.16<br>ERR<br>21.20<br>3.75<br>4.75<br>0.00 | ERR<br>ERR<br>ERR<br>ERR<br>ERR                                                                              | ERR<br>ERR<br>ERR<br>ERR<br>ERR<br>308.00<br>46.10<br>7.00<br>ERR<br>ERR<br>ERR<br>ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 425.00<br>25.00<br>30.00<br>20.50                                                                      |                                              |                                                                                                              | (100<br>(20<br>(20<br>(100<br>(100<br>(10<br>(10<br>308.00<br>46.10<br>7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                  |                                              | 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                      | The state of the s |
| POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND TOTAL ORGANIC CARBON OIL & GREASE AMONIA |                                              | CYANIDE free PHENOLS (EPA 604) PHENOLS (MTH. 420) ARSENIC BARIUM CADMIUM CHROMIUM CHROMIUM CHROMIUM CHROMIUM | INON ILEAD MAGANESE MERCURY NICKEL SELENIUM SILVER ZINC CALCIUM MAGNESIUM SODIUM ICP TOTALS ALUMINUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| SITE 18 CONTINUED        |             |                |      | AVERAGE       |
|--------------------------|-------------|----------------|------|---------------|
| BERYLIUM                 | 7/bn        | <100           |      | ERR           |
| BORON                    | 7<br>Ton    | 3700.00        |      | 3700.00       |
| BORON DISSOLVED          | 7 bn        |                |      | ERR           |
| CHLORIDE                 | Z Del       | 25.00          |      | 25.00         |
| COLOR                    | 8           |                |      | ERR           |
| FLOURIDE                 | 超元          |                |      | ERR           |
| RESIDUE FILTERABLE (TDS) | 五石          | 344.00         |      | 344.00        |
| RESIDUE NON (SS)         | 邓元          | 38.00          |      | 38.00         |
| RESIDUE                  |             |                |      | ERR           |
| RESIDUE VOLATILE         | III J       | 162.00         |      | 162.00        |
| SPECIFIC CONDUCTANCE     |             | 684.00         |      | 684.00        |
| SULPATE                  |             | 38.00          |      | 38,00         |
| SURFACTANTS              | EQ./L       | 0.20           |      | 0.20          |
| TURBIDITY                | 2           |                |      | RRR           |
| COBALT                   | T/bn        | <100           |      | i aga         |
| MOCYBDENIM               | 7Zbn        | 263.00         |      | 263.00        |
| TITANION                 | 7/bn        | <100           |      | ERR           |
| VANADIUM                 | 7/gn        | <100           |      | ERR           |
| ALK TOTAL                | 五石          | 266.00         |      | 266.00        |
| SULFIDES                 | T/ba        | 09.0           |      | 09.0          |
|                          |             |                |      | ERR           |
| 1,4-DICHLOROBENZENE      | 7/bn        | 1.60           | 2.30 | 1.60          |
| 601                      |             |                |      |               |
| BROMODI CHLOROMETHANE    |             | 4 /            |      | •             |
| RACIONALIA               | , c         | r r<br>· ·     |      | <b>ተ</b>      |
|                          | 200         | \.\<br>\.\     |      | <b>&lt;.7</b> |
| BECHOMETERANE            | <b>m</b> cg | 6.>            |      | 6.>           |
| CARBON TETRACHLORIDE     | acg         | <b>&lt;.</b> 5 |      | <b>.</b> 5    |
| CHICOROBENZIENE          | mcg         | <b>9.</b> >    |      | 9.>           |
| CHICACOETHANE            | <b>BC</b> g | <b>8.</b>      |      | %·>           |
| 2-CHLOROETHYTVINYL ETHER | mcg.        | 6.>            |      | 6.>           |
| CHLOROFORM               | <b>ac</b> d | <b>6.3</b>     |      | <b>&lt;.3</b> |
| CHLOROPETHANE            | <b>B</b> Cg | 8.             |      | <b>8.</b> >   |

| 6.>                          | . ₩                 | \$ <b>\</b>         | 7.>                 | 6.>                     | 4.>                | e. >               | e. >               | <b>4.5</b>                | m*>                 | <.5                      | <.5                        | 4.                 | 9.                        | <b>5.</b>             | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ |                    | <b>4. &gt;</b>         | 6.>            |     | ·             | <b>9.</b> ×   | ₽                   | <.5                  | <b>7.</b> >         | <b>**</b>     | <b>6.3</b>     |
|------------------------------|---------------------|---------------------|---------------------|-------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|----------------------------|--------------------|---------------------------|-----------------------|---------------------------------------------------------------------------------------------|--------------------|------------------------|----------------|-----|---------------|---------------|---------------------|----------------------|---------------------|---------------|----------------|
| 6.>                          | ₽                   | <b>&lt;.5</b>       | <b>6.7</b>          | 6.9                     | <b>4.4</b>         | <b>&lt;.3</b>      | <b>&lt;.3</b>      | <b>&lt;.</b> 5            | <b>&lt;.3</b>       | <.5                      | <b>&lt;.</b> 5             | <b>*.</b> *        | <b>6.6</b>                | <.5                   | <b>&lt;.</b> 5                                                                              | <b>&lt;.</b> 5     | <b>4.</b> 4            | 6.>            |     | <b>&lt;.5</b> | <b>9.</b> >   | <b>4</b> 1          | <b>&lt;.</b> 5       | <b>7.</b> >         | <b>&lt;.3</b> | <b>&lt;.</b> 3 |
| <b>BCG</b>                   | boat<br>mcd         | acg.                | <b>BC</b> d         | mcg                     | ncg.               | mcg                | <b>BC</b> g        | acg.                      | ncg.                | •                        |                            | -                  | E mcg                     |                       |                                                                                             | meg                | ncg.                   | mcg            |     | <b>ac</b> g   | mcg           | ncg                 | <b>≣</b> cg          | meg                 | mcg           | mcg            |
| <b>DIBROMOCHLOROMETHIANE</b> | 1,2-DICHLOROBENZENE | 1,3-dichlorobenzene | 1,4-DICHLOROBENZENE | DICHLORODIFLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 3-DICHLOROPROPENE | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHANE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE                                                                       | TRI CHLOROETHYLENE | TRICHLOROFLUOROMETHANE | VINYL CHLORIDE | 602 | BENZENE       | CHLOROBENZENE | 1,2-DICHLOROBENZENE | 1, 3-DICHLOROBENZENE | 1,4-dichlorobenzene | ETHYLBENZENE  | TOLUENE        |

SITE 18 CONTINUED

| 9 | יַ |
|---|----|
| • | _  |
| 1 | 片  |
| ٠ | 4  |
| C | Ω  |

| TOTAL ORGANIC COMPOUND    | mg/L   | 50.00   | 50.00         |
|---------------------------|--------|---------|---------------|
| CHEMCIAL OXYGEN DEMAND    | mg/L   | 72.00   | 72.00         |
| BIOCHEMICAL OXYGEN DEMAND | Z/Gm   | 0.12    | 0.12          |
| AMONIA                    | mg/L   | 72.00   | 72.00         |
| NITRATE                   |        | 0.12    | 0.12          |
| NITRITE                   |        | <.02    | <.02          |
| IKN                       | III T  | 80.00   | 80.00         |
| PHOSPHORUS ORITHO PO4     |        | 5.60    | 5.60          |
| PHOSPHORUS                | III J  | 15.00   | 15.00         |
| CYANIDE                   | mg/L   | 0.01    | 0.01          |
| PHENOLS                   | 7/bn   | 100.00  | 100.00        |
| IRON                      | ng/L   | 46.70   | 46.70         |
| CALCIUM                   | 邓元     | 8.80    | 8.80          |
| MAGNETSUM                 | 五石     | 700.00  | 700.00        |
| BORON                     | 7/bn   | 700.00  | 700.00        |
| CHLORIDE                  | mg/L   | 51.00   | 51.00         |
| RESIDUE FILTERABLE TDS    |        | 423.00  | 423.00        |
| RESIDUE                   | Ind/L  | 461.00  | 461.00        |
| RESIDUE VOLATILE          | III V  | 749.00  | 749.00        |
| SPECIFIC CONDUCTANCE      | orimin | 1204.00 | 1204.00       |
| ALK TOTAL                 | Ing/L  | 427.00  | 427.00        |
| SULFIDES                  | Ind/L  | 0.40    | 0.40          |
| SULFATE                   | i      | 84.00   | 84.00         |
| ARSENIC                   | ng/L   | <100    | <100          |
| BARTUM                    | ng/L   | <100    | <100          |
| CADMITUM                  | 7/bn   | <100    | <100          |
| CHROMIUM                  | ng/L   | <100    | <100          |
| CHROMIUM HEXAVALENT       | ng/L   | <50     | <50           |
| COPPER                    | ng/L   | <100    | <100          |
| IRON                      | 7/bn   | 315.00  | 315.00        |
| LEAD                      | 7/gn   | <20     | <b>&lt;20</b> |
| MAGANESE                  | ng/L   | <100    | <100          |
| MERCURY                   | ng/T   | ₽       | ₽             |
| NICKEL                    | ng/L   | <100    | <100          |

## SITE 19 CONTINUED

|     | SILVER ZINC ZINC CALCIUM MACNESIUM ALUMIUM BERYILLIUM COBALT MOLYBDENUM TITZANIUM VANDIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 7 7 7 7 7 6 5 6 5 6 6 6 6 6 6 6 6 6 6 | <10 <100 46.70 8.80 <100 <100 <100 <100 <100 <100 <100 <1 | <pre>&lt;10 &lt;100 46.70 8.80 &lt;100 &lt;100 &lt;100 &lt;100 &lt;100 &lt;100 &lt;100 &lt;1</pre> |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 137 | BROWDICHLOROMETHANE BROWDFORM BROWDFORM BROWDFTHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHANE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE 1, 4-DICHLOROBENZENE 1, 1-DICHLOROBENZENE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROPROPANE CIS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE |                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                    | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^                                                              |
|     | METHYLENE CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>a</b> cd                             | <b>4.4</b>                                                | 4.4                                                                                                |

| 9     |
|-------|
| NITIN |
| 19 CC |
| SITE  |

| 1,1,2,2-TETRACHLOROETHANE mcg 1,1,1,1-TRICHLOROETHANE mcg 1,1,2-TRICHLOROETHANE mcg mcg mcg | mcg<br>mcg  | ۸.<br>م. بر بر بر<br>د. بر | ^ ^ ^<br>6  |
|---------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------|-------------|
| TRICHLOROFILOROMETHANE VINYL CHLORIDE                                                       |             | *.5 *.9                                                        | <br>. 4 . 0 |
| 602                                                                                         |             |                                                                |             |
| BENZENE<br>CHLOROBENZENE                                                                    | mcg<br>mcd  | <.5<br>.6<br>.6                                                |             |
| 1,2-DICHLOROBENZENE                                                                         | incg.       | <1                                                             | , <u>4</u>  |
| 1, 3-DICHLOROBENZENE                                                                        | mcg         | <b>^.</b> 5                                                    | <.5<br><.5  |
| 1,4-DICHIOROBENZENE                                                                         | <b>BC</b> g | <b></b> >                                                      | <b>7.</b> > |
|                                                                                             | mcg         |                                                                | <b>.</b> 3  |
| TOTOTAL                                                                                     | <b>Bcg</b>  | <b>6.3</b>                                                     | <b>6.3</b>  |

| 550.00                                              | 00.1E                | 00.07<br>ERR | ERR     | ERR     | ERR                     | ERR                 | 143.00     | ERR     | ERR          | 20.00      | ERR               | 20.00      |         | <100   | <100      | <100     | ERR                 | <100      | 475.00 | <20  | <100     | 1.20    | <100   | <10      | <10    | 346.00 | 62.50      | 13.00     | ERR       | ERR    | ERR<br><100 | 277       |
|-----------------------------------------------------|----------------------|--------------|---------|---------|-------------------------|---------------------|------------|---------|--------------|------------|-------------------|------------|---------|--------|-----------|----------|---------------------|-----------|--------|------|----------|---------|--------|----------|--------|--------|------------|-----------|-----------|--------|-------------|-----------|
|                                                     |                      | 00:07        |         | T/bm    | T but                   | mg/L                | mg/L       | mg/L    | mg/L         | ng/L 50.00 |                   | ug/L 50.00 |         |        | ug/L <100 |          |                     | ug/L <100 |        |      |          |         |        | ug/L <10 |        |        | mg/L 62.50 |           | mg/L      | mg/L   |             | 001> 7/bn |
| CHEMICAL OXYGEN DEMAND<br>BIOCHEMICAL OXYGEN DEMAND | TOTAL CREAMIC CARBON | OLL & GREADE | NITRATE | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS orthoPO4 | PHOSPHORUS | CYANIDE | CYANIDE free |            | PHENOLS (EPA 604) | _          | ARSENIC | BARIUM | CADMIUM   | CHROMIUM | CHROMIUM HEXAVALENT | COPPER    | IRON   | LEAD | MACANESE | MERCURY | NICKEL | SELENIUM | SILVER | ZINC   | CALCIUM    | MAGNESIUM | POTASSIUM | SODIUM | ICP TOTALS  | ALUMINOM  |

| SITE 20 CONTINUED           |                 |               | AVERAGE       |
|-----------------------------|-----------------|---------------|---------------|
| BERYLIUM<br>BORON           | 7/bn            | <100<br><100  | <100<br><100  |
| BORON DISSOLVED             | ng/L            |               | ERR           |
| CHLORIDE                    | mg/L            |               | ERR           |
| COLOR                       | 8               |               | ERR           |
|                             | mg/L            |               | ERR           |
| RESIDUE FILTERABLE (TDS)    |                 |               | ERR           |
| RESIDUE NON (SS)            | mg/L            |               | ERR           |
| RESIDUE                     | mg/L            |               | ERR           |
| RESIDUE VOLATILE            | mg/L            |               | ERR           |
| SPECIFIC CONDUCTANCE        | MHO             |               | ERR           |
| SULFAITE                    | mg/L            |               | ERR           |
| SURFACTANTS                 | IIIQ/L          | 104.00        | 104.00        |
| TURBIDITY                   | 2               |               | ERR           |
| COBALT                      | nd/L            |               | ERR           |
| MOLYBDENUM                  | ng/L            | <100          | <100          |
| TITANIOM                    | ng/L            | <100          | <100          |
| VANADIUM                    | ng/L            | <100          | <100          |
| ALK TOTAL                   | mq/L            |               | ERR           |
| SULFIDES                    | mg/L            |               | ERR           |
| 601                         |                 |               |               |
| BROMODICHLOROMETHANE        | mcd             | 4.4           | <b>4.4</b>    |
| BROMOFORM                   | mcg.            | <b>7.&gt;</b> | <b>7.</b> >   |
| BROMOMETHANE                | inco.           | 6.>           | 6.>           |
| CARBON TETRACHLORIDE        | inc d           | <b>~.</b> 5   | <b>?</b> *2   |
| CHLOROBENZENE               | ncg.            | <b>*.6</b>    | 9.>           |
| CHLOROETHANE                | nc <sub>g</sub> | 8.>           | 8.            |
| 2-CHLOROETHYIVINYL ETHER    | incg.           | 6.>           | 6.>           |
| CHLOROFORM                  | mcg             | <b>&lt;.3</b> | <b>&lt;.3</b> |
| CHLOROMETHANE               | mcg             | 8.>           | 8.>           |
| <b>DIBROMOCHLOROMETHANE</b> | mcg             | 6.>           | 6.>           |

| 1,2-DICHLOROBENZENE<br>1,3-DICHLOROBENZENE                                                               | ecg<br>Becg                    | <1<br><.5                                                                                                                                      | <1<br><.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,4-dichlorobenzene<br>dichlorodifijoromethane<br>1,1-dichloroethane                                     |                                | r.                                                                                                                                             | ><br>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ETHENE                                                                                                   |                                | <br>                                                                                                                                           | <.3<br>.5<br>.5<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 国                                                                                                        |                                | w r. r.                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| METHYLENE CHLORIDE<br>1,1,2,2-TETRACHLOROETHANE<br>1,1,1-TRICHLOROETHANE                                 |                                | *                                                                                                                                              | 4. ^ ^ ^ ^ ^ ^ ^ ^ ^ 6. ^ ^ ^ 6. ^ ^ 6. ^ ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. ^ 6. |
| 1,1,2-TRICHLOROETHANE<br>IRICHLOROETHYLENE<br>IRICHLOROFLUOROMETHANE<br>VINYL CHLORIDE                   | 65<br>806<br>806<br>806<br>806 | . , , , ,<br>                                                                                                                                  | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 602 BENZENE CHLOROBENZENE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE TOLUENE TOLUENE | 620 mcd mcd mcd mcd            | (1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(5)<br>(5)<br>(6)<br>(7)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 | 6.5<br>6.5<br>6.5<br>7.7<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| A |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

| AVERAGE | 44.80<br>450.00<br>7.00                | 51.20                                                                                                                             | 15.00<br><100<br><100<br><100<br><100                            | <100<br>1069.00<br>111.00<br>101.00<br><10<br><10<br><10<br><100<br>45.40<br>8.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <100      |
|---------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|         | mg/L 44.80<br>mg/L 450.00<br>mg/L 7.00 | BG/L 51.20<br>BG/L 51.20<br>BG/L<br>BG/L<br>BG/L<br>BG/L<br>BG/L                                                                  | mg/L<br>ug/L<br>ug/L (100<br>ug/L (100<br>ug/L (100<br>ug/L (100 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L<br>(10<br>ug/L | ug/L <100 |
| SITE 21 | N DEMAND<br>(YGEN DEMAND               | TOTAL ORGANIC CARBON mg OIL & GREASE mg AMONIA NITRATE mg NITRITE mg TOTAL KJELDAHL NITROGEN mg PHOSPHORUS orthoPO4 mg CYANIDE mg | ree<br>EPA 604)<br>MTH. 620)                                     | CHROMITUM HEXAVALENT UG COPPER IRON IRON IRON UGANESE MAGANESE MERCURY NICKEL SELENTUM SILVER ZINC CALCTUM MAGNESIUM ROTASSIUM SODIUM ICP TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |

| SITE 21 CONTINUED                     |             |                | AVERAGE      |
|---------------------------------------|-------------|----------------|--------------|
| BERYLIUM                              | ug/L        | <100           | <100         |
| BORON DISSOLVED                       | ng/L        |                |              |
| CHLORIDE                              | 12 j        |                |              |
| COLOR                                 | 8 8         |                |              |
| FLOURIDE<br>PESTRIE ETT WEBABIE (MCS) |             |                |              |
|                                       |             |                |              |
| RESIDUE                               | ng/L        |                |              |
| RESIDUE VOLATILE                      | mg/L        |                |              |
| SPECIFIC CONDUCTANCE                  | CIMINO      |                |              |
| SULFAITE                              | mg/L        |                |              |
| SURFACTANTS                           | IIIQ/L      | 19.00          | 19.00        |
| TURBIDITY                             | 5           |                | •            |
| COBALT                                | ng/I        | <100           | <100         |
| MOLYBDENUM                            | ng/L        | <100           | 4100<br>4100 |
| TITANIUM                              | 7/bn        | <100           | <100<br>(100 |
| VANADIUM                              | 7/bn        | <100           | <100         |
| ALK TOTAL                             | mg/L        |                |              |
| SULFIDES                              | mg/L        |                |              |
| 601                                   |             |                |              |
| BROMODI CHLOROMETHANE                 | mcg         | <b>6.4</b>     | <b>4.</b>    |
| BROMOFORM                             | ncg         | <b>&lt;.7</b>  | <b>7.</b> >  |
| BROMOMETHANE                          | mcg         | 6.>            | 6°<br>'      |
| CARBON TETRACHLORIDE                  | mcg         | <b>&lt;.</b> 5 | <b>.</b> .5  |
| CHLOROBENZENE                         | mcg         | <b>9.</b> >    | 9. <b>°</b>  |
| CHLOROETHANE                          | mcg         | 8.             | æ.<br>*      |
| 2-CHLOROETHYIVINYL ETHER              | mcg         | <b>و.</b> ۲    | o. ^         |
| CHLOROFORM                            | <b>≡</b> c∂ | ۳.\<br>ن       | ? ° `        |
| CHLOROMETHANE                         | <b>m</b> cg | 8.             | ٥.<br>٧      |

## SITE 22 CONTINUED

| DIBROMOCHLOROMETHANE      | mcg  | 6.>            | 6.            |
|---------------------------|------|----------------|---------------|
| 1,2-DICHLOROBENZENE       | ncg  | <1             | な             |
| 1,3-DICHLOROBENZENE       | mcg  | <b>&lt;.</b> 5 | <b></b> 5     |
| 1,4-DICHLOROBENZENE       | meg  | <b>&lt;.7</b>  | <b>7.</b> >   |
| DICHLORODI FLUOROMETHANE  | mcg  | 6.>            | 6.>           |
| 1,1-DICHLOROETHANE        | mcg  | <b>***</b>     | <b>4.4</b>    |
| 1,2-DICHLOROETHANE        | meg  | <b>&lt;.</b> 3 | <.3           |
| 1,1-DICHLOROETHENE        | ncg  | <b>&lt;.3</b>  | <b>6.3</b>    |
| TRANS-1, 2-DICHLOROETHENE | mcg  | <b>&lt;.5</b>  | <.5           |
| 1,2-DICHLOROPROPANE       | ncg  | <b>&lt;.3</b>  | <b>6.3</b>    |
| CIS-1, 3-DICHLOROPROPENE  | ncg  | <b>&lt;.</b> 5 | <.5           |
| TRANS-1, 3-DICHLOROPENE   | mcg  | <b>&lt;.</b> 5 | <.5           |
| METHYLENE CHLORIDE        | mcg  | <b>*.4</b>     | <b>4.</b> 4   |
| 1,1,2,2-TETRACHLOROETHANE | mcg  | 9*>            | <b>9.</b> ×   |
| 1,1,1-TRICHLOROETHANE     | mcg  | <b>&lt;.5</b>  | <.5           |
| 1,1,2-TRICHLOROETHANE     | mcg  | <b>&lt;.</b> 5 | <.5<br>.5     |
| TRICHLOROETHYLENE         | ncg  | <b>&lt;.</b> 5 | <.5           |
| TRI CHLOROFI, UOROMETHANE | mcg  | <b>&lt;.4</b>  | <b>4.4</b>    |
| VINYL CHLORIDE            | ncg  | 6.>            | <b>6.</b> ×   |
| 602                       |      |                |               |
| BENZENE                   | mcd  | <.5            | <.5           |
| CHLOROBENZENE             | mcg  | <b>6.6</b>     | 9.            |
| 1,2-DICHLOROBENZENE       | mcg  | 4              | ₽             |
| 1,3-DICHLOROBENZENE       | mcg. | <b>&lt;.5</b>  | <.5<br>.5     |
| 1,4-dichlorobenzene       | mcg  | <b>&lt;.7</b>  | <b>7.</b> >   |
| ETHYLBENZ ENE             | mcg  | <b>&lt;.</b> 3 | <b>6.3</b>    |
| TOLUENE                   | mcg  | <b>&lt;.3</b>  | <b>&lt;.3</b> |

| POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND TOTAL ORGANIC CARBON OIL, & GREASE | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 27.40<br>40.00<br>1.10<br>27.40 | 27.40<br>40.00<br>1.10<br>27.40 |
|--------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---------------------------------|
|                                                                                                  | 7,00                                    | 28.60                           | 28.60                           |
| NITRITE<br>IOTAL KJELDAHL NITROGEN                                                               | mg/L                                    |                                 |                                 |
|                                                                                                  | 175                                     |                                 |                                 |
|                                                                                                  | ng/L                                    |                                 |                                 |
|                                                                                                  | 7,50                                    |                                 |                                 |
| EPA 604)                                                                                         | ng/L                                    |                                 |                                 |
| <u> </u>                                                                                         | ng/L                                    | <10                             | <10                             |
|                                                                                                  | ng/L                                    | <100                            | <100                            |
|                                                                                                  | ng/L                                    | 105.00                          | 105.00                          |
|                                                                                                  | √bn                                     | <100                            | <100                            |
|                                                                                                  | ng/L                                    | <100                            | <100                            |
| HEXAVALENT                                                                                       | ng/L                                    |                                 |                                 |
|                                                                                                  | ng/L                                    | <100                            | <100                            |
|                                                                                                  | ng/L                                    | 114.00                          | 114.00                          |
|                                                                                                  | ng/L                                    | <20                             | <20                             |
| •                                                                                                | ng/L                                    | <100                            | <100                            |
|                                                                                                  | ng/L                                    | <b>&lt;</b> 1                   | 4                               |
|                                                                                                  | ng/L                                    | <100                            | <100                            |
|                                                                                                  | ng/L                                    | <10                             | <10                             |
|                                                                                                  | ng/L                                    | <10                             | <10                             |
|                                                                                                  | ng/L                                    | <100                            | <100                            |
|                                                                                                  |                                         | 61.70                           | 61.70                           |
|                                                                                                  | IIG/L                                   | 0.00                            | 9.00                            |
| ~                                                                                                | mg/L                                    | 61.70                           | 61.70                           |
| -                                                                                                | ng/L                                    | 6.00                            | 9.00                            |
| •                                                                                                | ţ                                       | 001                             | ,100                            |
|                                                                                                  | <u> </u>                                | 001>                            | 0015                            |

| SITE 22 CONTINUED                     |                                         |               | AVERAGE     |
|---------------------------------------|-----------------------------------------|---------------|-------------|
| BERYLIUM<br>BORON<br>BORON DISSOLUTED | T bn                                    | <100          | <100        |
| CHLORIDE<br>COLOR                     | 3                                       |               |             |
| FLOURIDE<br>RESTORE FITTERABLE (TOS)  | Ing/L                                   |               |             |
| NON (SS)                              | 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |               |             |
| RESIDUE VOLATILE                      |                                         |               |             |
| SPECIFIC CONDUCTANCE                  | MMHO                                    |               |             |
| SULFATE<br>STRFACTANTS                | Ing/L                                   | 0 0           | 000         |
| TURBIDITY                             | )<br>1                                  | •             | 07:0        |
| COBALT                                | T/bn                                    | <100          | <100        |
| MOLYBDENUM                            | ng/L                                    | <100          | <100        |
| TITANIUM                              | 7<br>Jon                                | <100          | <100        |
| VANADIUM                              | ng/L                                    | <100          | <100        |
| ALK TOTAL                             | mg/L                                    |               |             |
| SOLF IDES<br>TETRACHLOROETHYLENE      | 1/6 <b>a</b>                            | 0.50          | 0.50        |
| 601                                   |                                         |               |             |
| BROMODI CHILOROMETHANE                | mcg                                     | <b>&lt;.4</b> | <b>***</b>  |
| BROMOFORM                             | mcg                                     | <b></b> >     | <u> </u>    |
| BROMETHANE                            | mcg                                     | 6.×           | 6.>         |
| CARBON TETRACHLORIDE                  | mcg                                     | <.5           | <b>*.</b> 5 |
| HIOROBENZENE                          | mcg                                     | 9.            | 9.          |
| CHLOROETHANE                          | incg<br>incg                            | ∞•°           | φ. ·        |
| c-Chloroethilvinil ether              | E C C                                   | 6.4           | 6.>         |

| ۵       |
|---------|
| CONTINE |
| E 22 (  |
| SITE    |

|   | CHLOROFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Bcg</b> | <b>&lt;.3</b>  | <b>6,3</b>                             |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------------------------------------|
|   | CHLOROMETRIANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | acg.       | <b>8.</b> %    | 8.                                     |
|   | DIBROMOCHLOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | acd in     | 6.>            | 6.                                     |
|   | 1,2-dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acq.       | <b>41</b>      | ₹                                      |
|   | 1,3-dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ncg.       | <b>&lt;.</b> 5 | . <b>.</b> . 5                         |
|   | 1,4-dichiorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acg.       | <b>7.</b> >    | <b>7.</b> >                            |
|   | DICHLORODI FLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acg        | 6.>            | 6.>                                    |
|   | 1,1-dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ncg.       | 4.4            | 4.4                                    |
|   | 1, 2-DICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ncg        | <b>&lt;.3</b>  | <b>6.3</b>                             |
|   | 1,1-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BCG        | « <b>,</b> »   | <b>6.3</b>                             |
|   | TRANS-1, 2-DICHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mcg        | <b>&lt;.</b> 5 | <b>&lt;.5</b>                          |
|   | 1,2-DICHLOROPROPANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mcg        | <b>.</b> 3     | e.>                                    |
|   | CIS-1, 3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acg        | <b>&lt;.</b> 5 | <.5<br><.5                             |
|   | TRANS-1, 3-DICHLOROPROPENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mcg.       | <b>&lt;.</b> 5 | 5.5                                    |
|   | METHYLENE CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mcg.       | 4.4            | <b>4.4</b>                             |
|   | 1,1,2,2-TETRACHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | meg        | <b>9.</b> *    | <b>6.</b> %                            |
|   | 1,1,1-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mcg        | <.5            | <.5                                    |
| - | 1,1,2-TRICHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mcg        | <b>&lt;.</b> 5 | <.5                                    |
|   | TRICHLOROETHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | meg        | <b>&lt;.</b> 5 | <.5                                    |
| _ | TRI CHLOROFLUOROMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | meg        | <b>4.4</b>     | <b>*.</b> *                            |
|   | VINYL CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mcg        | 6.9            | 6.>                                    |
|   | 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                |                                        |
|   | BENZENE<br>CHI OTOS ENIZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E C        | s.\            | \$.5<br>.5                             |
|   | COLCAROBEANE<br>1 2 DE COMPANION DE LA COMPANION | ECG.       | ٥٠,            | 9.>                                    |
|   | 1,2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g d        | 7              | Δ,                                     |
|   | 1, 3-bicaronocayacaya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | بر<br>الم  | ָּיִי יִּי     | <br>                                   |
|   | ETHYLBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | ·;<br>•;3      | \.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|   | TOLUENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mcg        | <b>&lt;.3</b>  | <b>*</b> 3                             |

| 5.70<br>6000.00<br>1585.00                                                                  | 10.80          | 105.00<br><100<br><100<br><100<br><100                                        | <100<br>2199.00<br>129.00<br>100.00<br><1<br><100<br><100<br><100   | 48.20<br>48.20<br>8.80<br>280.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60                                                                                          | 10.80<br>10.80 | 4444<br>105.00<br>(100<br>(100<br>(100                                        | VN V                                                                | ム (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND<br>EMAND                                                                                 |                |                                                                               | T T T T T T T T T T T T T T T T T T T                               | Transfer to the control of the contr |
| POT EXTR HYD<br>CHEMICAL OXYGEN DEMAND<br>BIOCHEMICAL OXYGEN DEMAND<br>TOTAL ORGANIC CARBON | <b>6</b> 5 6 6 | PHENOLS (EPA 604) PHENOLS (MTH. 620) ARSENIC BARIUM CADMIUM CHROWIUM CHROWIUM | COPPER<br>IRON<br>LEAD<br>MACANESE<br>MERCURY<br>NICKEL<br>SELENIUM | SILVER ZINC CALCIUM MAGNESIUM POTASSIUM SODIUM ICP TOTALS ALUMINUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| AVERAGE           | <100     |                           |                 |          |       |          |                          |                  |         |                  |                      |         | 1900.00     |           | <100   | <100       | 194.00   | <100    |           |          | 3.00                      |     | 4.                   | <b>7.</b> > | 6.>          | 5.                   | 9.>           | 8.>          |
|-------------------|----------|---------------------------|-----------------|----------|-------|----------|--------------------------|------------------|---------|------------------|----------------------|---------|-------------|-----------|--------|------------|----------|---------|-----------|----------|---------------------------|-----|----------------------|-------------|--------------|----------------------|---------------|--------------|
|                   | <100     |                           |                 |          |       |          |                          |                  |         |                  |                      |         | 1900.00     |           | <100   | <100       | 194.00   | <100    |           |          | 3.00                      |     | <b>4.</b> 4          | <b>7.</b> > | 6,5          | <b>~</b> 52          | 9.>           | <b>8.</b> %  |
|                   | 7/bn     | ng/L                      | י<br>קטי        |          | 5     |          |                          | mg/L             | T/bu    | ng/L             | CHIME                | ING/L   | IIIQ/L      | 13.       | 767    | ng/L       | ng/L     | ng/T    | ENG/L     |          | ng/L                      |     | mcd                  | acd.        | nco e        | EC C                 | BCd           | mcg.         |
| SITE 23 CONTINUED | BERYLIUM | BORON<br>PORON DISSOLUTED | BORON DISSOLVED | CHLORIDE | COLOR | FLOURIDE | RESIDUE FILTERABLE (TDS) | RESIDUE NON (SS) | RESIDUE | RESIDUE VOLATILE | SPECIFIC CONDUCTANCE | SULFATE | SURFACTANTS | TURBIDITY | COBALT | MOLYBDENUM | TITANIUM | VANDIUM | ALK TOTAL | SULFIDES | TRANS-1, 2-DICHLOROETHANE | 601 | BROMODICHLOROMETHANE | BROMOFORM   | BROMOMETHANE | CARBON TETRACHLORIDE | CHLOROBENZENE | CHLOROETHANE |

| CHLOROFORM                 | <b>B</b> cg | <b>&lt;.3</b>  | <b>6.3</b>     |
|----------------------------|-------------|----------------|----------------|
| CHLOROPETHANE              | meg         | 8.             | %<br>••        |
| DIBROMOCHLOROMETHANE       | <b>m</b> cg | 6.9            | <b>6.</b> %    |
| 1,2-DICHLOROBENZENE        | meg         | ₽              | ₽              |
| 1,3-DICHLOROBENZENE        | <b>BC</b> d | <b>&lt;.</b> 5 | <b>.</b> .5    |
| 1,4-DICHLOROBENZENE        | <b>m</b> cg | <b>&gt;</b>    | <b>4.7</b>     |
| DICHLORODI FLUOROMETHANE   | <b>B</b> Cg | 6.5            | 6.9            |
| 1,1-DICHLOROETHANE         | BCG         | <b>***</b>     | <b>4.</b> 4    |
| 1,2-DICHLOROETHANE         | neg         | <b>&lt;.3</b>  | <b>&lt;.</b> 3 |
| 1,1-DICHLOROETHENE         | <b>B</b> Cg | <b>&lt;.</b> 3 | ×.3            |
| TRANS-1, 2-DICHLOROETHENE  | mcg         | <b>&lt;.</b> 5 | <b>.</b> 5     |
| 1,2-DICHLOROPROPANE        | <b>m</b> cg | <b>&lt;.3</b>  | <b>~</b> .3    |
| CIS-1, 3-DICHLOROPROPENE   | meg         | <b>&lt;.</b> 5 | <b>.</b> 5     |
| TRANS-1, 3-DICHLOROPROPENE | mcg         | <b>&lt;.</b> 5 | <b>.</b> 5     |
| METHYLENE CHLORIDE         | meg         | <b>***</b>     | <b>4.4</b>     |
| 1,1,2,2-TETRACHLOROETHANE  |             | 9*>            | <b>9. \</b>    |
| 1,1,1-TRICHLOROETHANE      |             | <b>&lt;.5</b>  | <b>.</b> .5    |
| 1,1,2-TRICHLOROETHANE      |             | <b>&lt;.</b> 5 | <b>&lt;.</b> 5 |
| TRICHLOROETHYLENE          | <b>m</b> cg | <b>&lt;.</b> 5 | <b>~.</b> 5    |
| TRI CHLOROFLUOROMETHANE    | mcg         | <b>***</b>     | <b>4.4</b>     |
| VINYL CHLORIDE             | acg.        | 6.>            | <b>6.</b> >    |
| 602                        |             |                |                |
| BONZIONE                   | <b>BC</b> d | <b>~.</b> 5    | <b>&lt;.</b> 5 |
| CHLOROBENZENE              | mcg         | <b>9.</b> >    | <b>9. °</b>    |
| 1,2-DICHLOROBENZENE        | mcg         | 41             | 7              |
| 1,3-DICHLOROBENZENE        | meg         | <b>&lt;.</b> 5 | <b>*.</b> 5    |
| 1,4-DICHLOROBENZENE        | mcg         | <b></b> >      | <b>7.</b> >    |
| ETHYLBENZENE               | meg         | <b>&lt;.3</b>  | <b>~.</b> 3    |
| TOLUENE                    | mcg         | <b>&lt;.3</b>  | <b>&lt;.</b> 3 |

SITE 23 CONTINUED

| SITE 24                             |                       |         | AVERAGE |
|-------------------------------------|-----------------------|---------|---------|
| POT EXTR HYD CHEMICAL OXYGEN DEMAND |                       | 256.00  | 256.00  |
| BIOCHEMICAL OXYGEN DEMAND           |                       | 6150.00 | 6150.00 |
| OIL & GREASE                        |                       | 1176.00 | 1176.00 |
| AMONIA                              | 7/5m                  |         |         |
| NITRATE                             |                       |         |         |
| TOTAL KJELDAHL NITROGEN             |                       |         |         |
| PHOSPHORUS orthoPO4                 | mg/L                  |         |         |
| PHOSPHORUS                          | mg/L                  |         |         |
|                                     |                       |         |         |
| free                                | 邓九                    |         |         |
| (EPA (                              | ng/L                  |         |         |
| PHENOLS (MTH. 620)                  | ng/L                  | 820.00  | 820.00  |
| ARSENIC                             | Z/gn                  | <100    | <100    |
| BARIUM                              | ng/L                  | <100    | <100    |
| CADMIUM                             | ng/L                  | <100    | <100    |
| CHROMIUM                            | 7/bn                  | <100    | <100    |
| CHROMIUM HEXAVALENT                 | ng/L                  |         |         |
| COPPER                              | ug/L                  | <100    | <100    |
| IRON                                | ng/L                  | 1826.00 | 1826.00 |
| LEAD                                | ug/L                  | 180.00  | 180.00  |
| MAGANESE                            | ng/L                  | <100    | <100    |
| MERCURY                             | ng/L                  | ₽       | ₽       |
| NICKEL                              | ng/L                  | <100    | <100    |
| SELEVIUM                            | ng/L                  | 20.00   | 20.00   |
| SILVER                              | ng/L                  | 32.00   | 32.00   |
| ZINC                                | ng/T                  | 951.00  | 951.00  |
| CALCTUM                             |                       | 32.30   | 32.30   |
| MAGNESIUM                           | IIIQ/L                | 36.30   | 36.30   |
| POTASSIUM                           | mg/L                  |         |         |
| SODIUM                              | mg/L                  |         |         |
| ICF TOTALS                          | 7 2:                  | 1987 00 | 1007 00 |
| ALCONTINON                          | ı<br>Marian<br>Marian | 1987.00 | 170/.00 |

| SITE 24 CONTINUED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                | AVERAGE        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|----------------|
| BERYLIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7/bn        | <100           | <100           |
| BORON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng/L        |                |                |
| BORON DISSOLVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T/bn        |                |                |
| CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/50        |                |                |
| COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8           |                |                |
| FLOURIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                |                |
| RESIDUE FILTERABLE (TDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T/bu        |                |                |
| RESIDUE NON (SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T/bu        |                |                |
| RESIDUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/L        |                |                |
| RESIDUE VOLATILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                |                |
| SPECIFIC CONDUCTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEE CHARLES |                |                |
| SULFATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T/DII       |                |                |
| SURFACTANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 1750.00        | 1750 00        |
| TURBIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,5          |                | 20:00          |
| COBALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/bn        | <100           | <100           |
| MOLYBDENUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng/L        | <100           | \$100<br>\$100 |
| TITANIOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng/L        | 167.00         | 167.00         |
| VANIADIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd/T        | <100           | 7100           |
| <br>ALK TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/01        |                | 001            |
| SULFIDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/6         |                |                |
| BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3           | 0.80           | 0              |
| 1,1,1-TRICHOLORETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 5.50           | 5.50           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |                |
| BDOMOT CHI OBOMENTANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,           | •              |                |
| PROCESSION OF THE PROPERTY OF | ECG.        | <b>4.</b> ^    | 4.4            |
| BROTOFORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>B</b> Cg | <b>&lt;.7</b>  | <b>7. &gt;</b> |
| BROMOMETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ncg.        | 6.>            | 6.>            |
| CARBON TETRACHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>B</b> Cd | <b>&lt;.</b> 5 | , (r)          |
| CHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ncd.        | <b>9. ?</b>    | 9              |
| CHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acg.        | <b>8.</b> %    | <br>           |

| AVERAGE <.9                                | <br>        | œ. <b>&gt;</b> | 6.>                  | 7                   | <b>5.</b> >         | <b>7.</b> >         | 6.>                             | 4.>                | <b>**</b> 3        | <b>**</b>          | <b>5.</b> >               | <b>**</b> 3         | <.5                      | <.5                        | <b>*.</b>          | 9.>                       | <.5                   | <b>5.</b> >           | <b>&lt;.</b> 5    | <b>7.</b>              | 6*>            |     | \$<br>\$.5 | 9.>             | · \                    | 1,                  | \$ .                 | <b>7.</b> >         | ~.·          | e.>         |
|--------------------------------------------|-------------|----------------|----------------------|---------------------|---------------------|---------------------|---------------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|----------------------------|--------------------|---------------------------|-----------------------|-----------------------|-------------------|------------------------|----------------|-----|------------|-----------------|------------------------|---------------------|----------------------|---------------------|--------------|-------------|
| ٠<br>٠                                     | <b>6.3</b>  | æ.^            | 6.>                  | 7                   | <.5                 | <b>&lt;.7</b>       | 6.>                             | <b>6.4</b>         | <b>6.3</b>         | <b>&lt;.</b> 3     | <.5                       | <b>**</b> 3         | <b>&lt;.</b> 5           | <.5                        | <b>***</b>         | <b>9.</b> >               | <.5                   | <.5                   | <.5               | <b>*.4</b>             | 6.>            |     | <b>4.5</b> | 9,>             | ;                      | ب<br>ک              | ٠.<br>ا              | <b>7.</b> >         | m (          | <b>*.</b> 3 |
| mcg                                        | 52          | ECG.           | <b>BC</b> g          | <b>ac</b> d         | <b>BCG</b>          | <b>BCG</b>          | BCG                             | Bcg                | acg                | mcg                | acg.                      | <b>Bcg</b>          | ac d                     | BCG                        | BCG                | mcg.                      | ncg.                  | BCG                   | acg.              | <b>BCG</b>             | mcg            |     | DCG<br>BCG |                 |                        | 2                   | <b>BCG</b>           | acg.                | ECG<br>E     | <b>B</b> CG |
| SITE 24 CONTINUED 2-CHLOROETHYIVINYL ETHER | CHICAROPORM | CHLOROMETHANE  | DIBROMOCHLOROMETHANE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | <b>DICHLORODI FLUOROMETHANE</b> | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 3-DICHLOROPROPENE | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHANE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROFLUOROMETHANE | VINYL CHLORIDE | 602 | BENZENE    | CHI OROBENZIENE | 1 2 DICH COORDENS ENTE | 1,2-DICHLOROBENGENE | 1, 3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | ETHYLBENZENE | TOLUENE     |

| AVERAGE | 42.00        |                        |                           |                      | 72.80        |        |         |         |                         |                     |            |         |              |                   |                    | <100 |        |         |          |                     |        |      |      | 134.00    |         | 7      |          |        |      | 59.20   | 10.40     |           |                      |            |
|---------|--------------|------------------------|---------------------------|----------------------|--------------|--------|---------|---------|-------------------------|---------------------|------------|---------|--------------|-------------------|--------------------|------|--------|---------|----------|---------------------|--------|------|------|-----------|---------|--------|----------|--------|------|---------|-----------|-----------|----------------------|------------|
|         | Ing/L        |                        |                           | IIId/I               | mq/L         | mq/L   |         | II T    | II V                    | mg/L                | 1/01       |         | mg/L         | ng/L              | ng/L               | ng/L | ng/I   | na      | ng/T     | nd/L                | T/bn   | T/bn | ng/L | ng/L      | ng/L    | nd/L   | ng/L     | ng/L   | 7/bn | T/bu    | mg/L      | mq.7      | mg/L                 | 1          |
| SITE 25 | POT EXTR HYD | CHEMICAL OXYGEN DEMAND | BIOCHEMICAL OXYGEN DEMAND | TOTAL ORGANIC CARBON | OIL & GREASE | AMONIA | NITRATE | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS orthoPO4 | PHOSPHORUS | CYANIDE | CYANIDE free | PHENOLS (EPA 604) | PHENOLS (MTH. 620) | •    | BARIUM | CADMIUM | CHROMIUM | CHROMIUM HEXAVALENT | COPPER | IRON | LEAD | MAGANIESE | MERCURY | NICKEL | SELENIUM | SILVER | ZINC | CALCTUM | MACNESIUM | FOTASSIUM | SODIUM<br>ICP TOTALS | ALIBETARIE |

|                                              | 1                                                            | ;             | AVERAGE                               |
|----------------------------------------------|--------------------------------------------------------------|---------------|---------------------------------------|
| BERYLIUM<br>BORON<br>BORON DISSOLVED         | L Su<br>L Su<br>L Su<br>L Su<br>L Su<br>L Su<br>L Su<br>L Su | <100          | <100                                  |
| CHLORIDE                                     | A B                                                          |               |                                       |
| 3                                            | mg/L                                                         |               |                                       |
| RESIDUE FILTERABLE (TDS)<br>RESIDUE NON (SS) |                                                              |               |                                       |
| RESIDUE                                      | III T                                                        |               |                                       |
| RESIDUE VOLATILE                             | mg/L                                                         |               |                                       |
| SPECIFIC CONDUCTANCE                         | MMHO                                                         |               |                                       |
| SULFATE                                      | 邓元                                                           |               |                                       |
| SURFACTANTS                                  | mg/L                                                         | 14.00         | 14.00                                 |
| IURBIDITY                                    | 2                                                            |               |                                       |
| COBALT                                       | ng/L                                                         | <100          | <100                                  |
| MOLYBDENUM                                   | ng/L                                                         | <100          | <100                                  |
| IITANIUM                                     | ng/L                                                         | 349.00        | 349.00                                |
| VANADIUM                                     | ng/L                                                         | <100          | <100                                  |
| ALK TOTAL                                    | mg/L                                                         |               |                                       |
| SULFIDES                                     | mg/L                                                         |               |                                       |
| 1,1,1-TRICHOLORETHANE                        |                                                              | 5.90          | 5.90                                  |
| 1, 2-DICHLOROETHANE                          |                                                              | 5.30          | 5.30                                  |
| CHLOROBENZENE                                |                                                              | 44.00         | 49.00                                 |
| 601                                          |                                                              |               |                                       |
| BROMODI CHLOROMETHANE                        | mcg                                                          | <b>4.4</b>    | <b>4.4</b>                            |
| BROMOFORM                                    | mcg                                                          | <b>&lt;.7</b> | <b>&lt;.7</b>                         |
| BROMOMETHANE                                 | <b>≣</b> c∂                                                  | 6.            | 6.>                                   |
| CARBON TETRACHLORIDE                         | acg.                                                         |               |                                       |
| CHLOROBENZENE                                | acg<br>acg                                                   | ٥٠,           | • • • • • • • • • • • • • • • • • • • |
|                                              | בר<br>בר                                                     | 0.,           | ×.×                                   |

. .

| 6.>                      | <b>6.3</b>    | 8.*           | 6.>                           | 4                   | <b>&lt;.5</b>       | <b>6.7</b>          | 6.>                      | <b>4.4</b>         | <b>6.3</b>         | <b>6.3</b>         | <b>&lt;.5</b>             | <b>6.3</b>          | <b>&lt;.5</b>            | <b>&lt;.5</b>              | <b>4.4</b>         | 9.>                       | <b>&lt;.5</b>        | <b>&lt;.</b> 5        | <b>*.5</b>           | <b>4.4</b>             | 6.>            |     | <b>.</b> | ) ( | 9.>           | ₽                   | <b>*.</b> 5         | <b>6.7</b>          | <b>6.3</b>   | <b>6.3</b>    |
|--------------------------|---------------|---------------|-------------------------------|---------------------|---------------------|---------------------|--------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|----------------------------|--------------------|---------------------------|----------------------|-----------------------|----------------------|------------------------|----------------|-----|----------|-----|---------------|---------------------|---------------------|---------------------|--------------|---------------|
|                          |               |               |                               |                     |                     |                     |                          |                    |                    |                    |                           |                     |                          |                            |                    |                           |                      |                       |                      |                        |                |     |          |     |               |                     |                     |                     |              |               |
| 6.>                      | <b>&lt;.3</b> | <b>8.</b> %   | 6.>                           | ₽                   | <b>&lt;.</b> 5      | <b>7.</b> >         | 6.>                      | <b>4.</b>          | <b>&lt;.3</b>      | <b>&lt;.3</b>      | <b>&lt;.</b> 5            | <b>&lt;.</b> 3      | <b>^.</b> 5              | <b>&lt;.</b> 5             | <b>4.4</b>         | <b>9. &gt;</b>            | <b>&lt;.</b> 5       | <b>&lt;.</b> 5        | <b>&lt;.</b> 5       | <b>4.4</b>             | 6.>            |     | \<br>\   | ; , | ٥.            | ₽                   | <b>^.</b> 5         | <b>7.</b> >         | <b>6.3</b>   | <b>&lt;.3</b> |
| meg                      | BCg           | ncg           | <b>BC</b> d                   | <b>BC</b> g         | <b>B</b> Cg         | <b>BC</b> g         | <b>BC</b> g              | mcg.               | <b>B</b> Cg        | mcg                | mcg                       | ncg                 | <b>BCG</b>               |                            |                    | •                         |                      | <b>Bcg</b>            | ncg                  | mcg.                   | mcg            |     |          |     | ECG.          | <b>B</b> Cg         | ncg                 | mcg                 | ac d         | mcg           |
| 2-CHLOROETHYIVINYL ETHER | CHLOROFORM    | CHLOROMETHANE | <b>DIBROMOCHI, OROMETHANE</b> | 1,2-dichlorobenzene | 1,3-DICHLOROBENZENE | 1,4-dichlorobenzene | DICHLORODI FLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 3-DICHLOROPROPENE | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHANE | ,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRI CHI OROETHYL ENE | TRICHLOROFLUOROMETHANE | VINYL CHLORIDE | 602 | BENZ ENE |     | CHLURODENGENE | 1,2-dichlorobenzene | 1,3-dichlorobenzene | 1,4-dichlorobenzene | ETHYLBENZENE | TOLUENE       |

SITE 25 CONTINUED

| AVERAGE | 66.00<br>1400.00<br>298.00                                                    | 75.20                                        | 510.00<br><100<br>308.00<br>481.00<br><100                 | <100<br>14720.00<br>330.00<br>1161.00<br>5.30<br><100<br><10<br>7202.00<br>512.80<br>57.70                                      | 3458.00      |
|---------|-------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|
|         | mg/L 66.00<br>mg/L 1400.00<br>mg/L 298.00                                     | 897.<br>897.<br>897.<br>897.<br>897.<br>897. | 7.7. \$10.00<br>7.7. \$100<br>7.7. \$38.00<br>7.7. \$81.00 | ug/L <100 ug/L <100 ug/L 14720.00 ug/L 130.00 ug/L 5.30 ug/L <100 ug/L <100 ug/L <100 ug/L <100 ug/L <100 ug/L 27.70 mg/L 27.70 | ug/L 3458.00 |
| SITE 26 | CHEMICAL OXYGEN DEMAND ING BIOCHEMICAL OXYGEN DEMAND ING TOTAL OPERANT CARBON | CEN                                          | MTH. 620)                                                  | HEXAVALENT  M  M  LS                                                                                                            | ALUMINUM ug  |

| SITE 26 CONTINUED        |             |               | AVERRAGE                                                                                    |
|--------------------------|-------------|---------------|---------------------------------------------------------------------------------------------|
| BERYLIUM                 | ng/L        | <100          | <100                                                                                        |
| BORON                    | ng/L        |               |                                                                                             |
| BORON DISSOLVED          | ng/L        |               |                                                                                             |
| CHLORIDE                 | 7           |               |                                                                                             |
| COLOR                    | 8           |               |                                                                                             |
| FLOURIDE                 | Ing/L       |               |                                                                                             |
| RESIDUE FILTERABLE (TDS) | mg/L        |               |                                                                                             |
| RESIDUE NON (SS)         |             |               |                                                                                             |
| RESIDUE                  | Ing/L       |               |                                                                                             |
| RESIDUE VOLATILE         | II DIE      |               |                                                                                             |
| SPECIFIC CONDUCTANCE     | OHE         |               |                                                                                             |
| SULFATE                  | mg/L        |               |                                                                                             |
| SURFACTANTS              | mg/L        | 210.00        | 210.00                                                                                      |
| TURBIDITY                | 5           |               |                                                                                             |
| COBALT                   | ng/L        | <100          | <100                                                                                        |
| MOLYBDENUM               | ng/L        | <100          | <100                                                                                        |
| TITANIUM                 | ng/L        | <100          | <100                                                                                        |
| VANADIUM                 | ng/L        | <100          | <100                                                                                        |
| ALK TOTAL                | mg/L        |               |                                                                                             |
| SULTIDES                 | mg/L        |               |                                                                                             |
| TEANS-1-2-DICHLOROETHENE | na A.       | 6.70          | 6.70                                                                                        |
| METHYLENE CHLORIDE       | ng/L        | 501.00        | 501.00                                                                                      |
|                          |             |               |                                                                                             |
| TOO                      |             | * '           | • •                                                                                         |
| BROMOBOUTHLONOMETHANE    | 501         | #· /          | * ^                                                                                         |
| DECAMPAGE CAMP           | בי בי<br>בי | · · ·         | • •                                                                                         |
| CARBON TETRACHLORIDE     | S D         | າ ເກ <b>ໍ</b> | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ |
| CHLOROBENZENE            | ) DE        | 9.>           | <b>9.</b> >                                                                                 |
| CHLOROETHANE             | mcg         | 8.>           | 8.>                                                                                         |

| 6.>                      | <.3           | <b>8.</b>     | 6.>                         | ₽                   | <.5<br><.5          | <b>7.</b> >         | 6.>                     | <b>4.4</b>         | <b>*.</b> 3        | <b>&lt;.3</b>      | <b>*.</b> 5               | <.3                 | <b>&lt;.5</b>            | <.5<br>*.5                 | <b>4.4</b>         | <b>9.</b> ×               | <.5                   | <b>&lt;.</b> 5        | <.5               | <b>4.4</b>             | 6.>            |     | <.5            | 9*>           | 7                   | \$°2                | <b>7.</b> >         | m m<br>* *               |
|--------------------------|---------------|---------------|-----------------------------|---------------------|---------------------|---------------------|-------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|----------------------------|--------------------|---------------------------|-----------------------|-----------------------|-------------------|------------------------|----------------|-----|----------------|---------------|---------------------|---------------------|---------------------|--------------------------|
|                          |               |               |                             |                     |                     |                     |                         |                    |                    |                    |                           |                     |                          |                            |                    |                           |                       |                       |                   |                        |                |     |                |               |                     |                     |                     |                          |
| 6.>                      | <b>&lt;.3</b> | 8.8           | 6.>                         | ₽                   | <b>.</b> .5         | <b>7.</b> >         | 6.>                     | <b>4.4</b>         | <b>&lt;.3</b>      | <b>6.3</b>         | <b>.</b> .5               | <b>6.3</b>          | <b>&lt;.</b> 5           | <b>&lt;.</b> 5             | 4.4                | <b>9.</b> %               | <b>&lt;.</b> 5        | <b>&lt;.</b> 5        | <b>&lt;.</b> 5    | 4.4                    | 6.>            |     | <b>&lt;.</b> 5 | 9*>           | 4                   | <b>&lt;.5</b>       | <b>4.7</b>          | <br>                     |
| R mcg                    | mcg           | mcg.          | mcg                         | mcg                 | mcg                 | mcg                 |                         | mcg                | mcg                | mcg                |                           | mcg                 |                          |                            |                    | NE mcg                    | mcg                   | mcg                   | mcg               | mcg                    | mcg            |     | IIC d          | IIC d         | ECQ.                | mcg                 | ncg                 | mcg<br>mcg               |
| 2-CHLOROETHYIVINYL ETHER | CHLOROFORM    | CHLOROMETHANE | <b>DIBROMOCHLOROMETHANE</b> | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | DICHLORODIFLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLJROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 3-DICHLOROPROPENE | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHANE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROFLUOROMETHANE | VINYL CHLORIDE | 602 | BENZENE        | CHLOROBENZENE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | ETHY LBENZENE<br>TOLUENE |
|                          |               |               |                             |                     |                     |                     |                         |                    |                    |                    |                           |                     |                          |                            |                    |                           | _                     |                       |                   |                        |                |     |                |               |                     |                     |                     |                          |

| 75.60<br>1000.00<br>381.00                                          | 86.40                                          |         |                                             |            |              |      | 50.00              | <100    | <100   | <100    | <100     |                     | <100   | 233.00 | 201.00 | <100     | ₽       | <100   | <10      | <10    | 286.00 | 38.90   | 6.80      |           |        |            | 60 110          |
|---------------------------------------------------------------------|------------------------------------------------|---------|---------------------------------------------|------------|--------------|------|--------------------|---------|--------|---------|----------|---------------------|--------|--------|--------|----------|---------|--------|----------|--------|--------|---------|-----------|-----------|--------|------------|-----------------|
| 75.60<br>1000.00<br>381.00                                          | 86.40                                          |         |                                             |            |              |      | 50.00              | <100    | <100   | <100    | <100     |                     | <100   | 233.00 | 201.00 | <100     | ₽       | <100   | <10      | <10    | 286.00 | 38.90   | 6.80      |           |        |            | 00 1.7          |
|                                                                     | mg/L                                           | 西部方を    | mg/L                                        | D D D      |              | ug/L | ng/L               | ng/L    | T/gn   | ng/L    | ng/L     | ng/L                | ng/I   | ng/L   | ng/L   | ng/L     | ng/L    | ng/L   | ng/L     | ng/L   | ng/L   | mg/L    | mg/L      | IIIQ/L    | mg/L   | ì          |                 |
| POT EXTR HYD<br>CHEMICAL OXYGEN DEMAND<br>BIOCHEMICAL OXYGEN DEMAND | TOTAL ORGANIC CARBON<br>OIL & GREASE<br>AMONIA | NITRATE | TOTAL KJELDAHL NITROGEN PHOSPHORUS orthoPO4 | PHOSPHORUS | CYANIDE free | _    | PHENOLS (MTH. 620) | ARSENIC | BARIUM | CADMIUM | CHROMIUM | CHROMIUM HEXAVALENT | COPPER | IRON   | LEAD   | MAGANESE | MERCURY | NICKEL | SELENIUM | SILVER | ZINC   | CALCIUM | MAGNESIUM | POTASSIUM | SODIUM | ICP TOTALS | N T FINETEN THE |

| SITE 27 CONTINUED         |       |        | AVERAGE |
|---------------------------|-------|--------|---------|
| BERYLIUM                  | ng/L  | <100   | <100    |
| BORON                     | ng/L  |        |         |
| BORON DISSOLVED           | 7/bn  |        |         |
| CHLORIDE                  | Ing/L |        |         |
| COLOR                     | 8     |        |         |
| FLOURIDE                  | mg/L  |        |         |
| RESIDUE FILTERABLE (TDS)  | III J |        |         |
| RESIDUE NON (SS)          | mq/L  |        |         |
| RESIDUE                   | mq/L  |        |         |
| RESIDUE VOLATILE          | mq/L  |        |         |
| SPECIFIC CONDUCTANCE      | OHE   |        |         |
| SULFATE                   | mq/L  |        |         |
| SURFACTANTS               | ng/L  | 110.00 | 110.00  |
| TURBIDITY                 | ,5    |        |         |
| COBALT                    | 7/bn  | <100   | <100    |
| MOLYBDENUM                | T/bn  | <100   | <100    |
| TITANIUM                  | 7/bn  | <100   | <100    |
| VANADIUM                  | ng/L  | <100   | <100    |
| ALK TOTAL                 | mg/L  |        |         |
| SULFIDES                  | mg/L  |        |         |
| CHLOROFORM                | nd/L  | 4.30   | 4.30    |
| TRANS-1, 3-DICHLOROETHANE | ng/I  | 5.60   | 5.60    |
| METHYLENE CHLORIDE        | ng/L  | 34.00  | 34.00   |
| BENZENE                   |       | 234.00 | 234.00  |
| 1,3-DICHLOROBENZENE       | 7/bn  | 627.00 | 627.00  |
| ETHYL BENZENE             | ng/L  | 607.00 | 607.00  |
| TOLUENE                   | ng/L  | 367.00 | 367.00  |

| <b>.</b> .5    | 9.>           | 7                   | <.5                 | <b>7.</b> >         | e*>          | e.>            |
|----------------|---------------|---------------------|---------------------|---------------------|--------------|----------------|
| <b></b> 5      | <b>9.</b>     | 4                   | <.5                 | <b>6.7</b>          | <b>6.3</b>   | <b>&lt;.</b> 3 |
| meg            | mcg           | mcg                 | med                 | mcg                 | acg.         | mcg            |
| 602<br>Benzene | CHLOROBENZENE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | ETHYLBENZENE | TOLUENE        |

|                                                      |                                        | 49.00                                                                    | 200.00<br>49.00<br>2.60                                                |
|------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                      |                                        | 20.00<br><100<br><100<br><100<br><100                                    | 20.00<br><100<br><100<br><100<br><100                                  |
| HEXAVALENT UC CO | 77777777777777777777777777777777777777 | <pre>&lt;100 230.00 &lt;20 &lt;100 &lt;10 &lt;10 &lt;10 42.90 5.90</pre> | (100<br>(230.00<br>(20<br>(100<br>(100<br>(100<br>(100<br>(100<br>5.90 |

| AVERAGE           | ug/L <100 <100<br>ug/L ug/L<br>cu<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/ | mg/L 29.00 29.00       | ug/L <100 (100 (100 ug/L <100 (100 (100 ug/L <100 (100 (100 ug/L <100 (100 (100 ug/L )))) | ug/L 9.40 9.40 | mcg <.4 <.4 <.4 incg <.7 <.7 incg <.9 incg <.5 incg <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 <.5 |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------|
| SITE 28 CONTINUED | BERYLIUM BORON BORON BORON BORON CHLORIDE COLOR FLOURIDE RESIDUE FILTERABLE (TDS) RESIDUE VOLATILE RESIDUE CONDUCTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SULFATE<br>SURFACTANTS | TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES                          | CHLOROFORM     | 601 BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE                        |

## SITE 28 CONTINUED

| 6.>                      | <b>&lt;.3</b> | 8.            | 6.>                  | <b>41</b>           | <b>&lt;.</b> 5      | <b>&lt;.</b> 7      | 6.>                     | <b>***</b>         | <b>6.3</b>         | <b>&lt;.3</b>      | <b>&lt;.</b> 5            | <b>&lt;.3</b>       | <b>&lt;.</b> 5           | <.5                        | <b>*.</b> *        | 9.>                          | <b>&lt;.5</b>         | <b>~.</b> 5           | <.5               | 4.4                    | 6*>            |     | <b>5</b>      | 9">           | ,                   |                    | C* <b>&gt;</b>            | <b>7. &gt;</b>      | <br>         | <b>6.3</b>  |
|--------------------------|---------------|---------------|----------------------|---------------------|---------------------|---------------------|-------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|----------------------------|--------------------|------------------------------|-----------------------|-----------------------|-------------------|------------------------|----------------|-----|---------------|---------------|---------------------|--------------------|---------------------------|---------------------|--------------|-------------|
| <b>6.</b> >              | <b>ć.</b> 3   | 8.×           | 6.>                  | ₽                   | <b>.</b> .5         | <b>7.</b> >         | 6.>                     | <b>*.4</b>         | <b>&lt;.3</b>      | <b>6.3</b>         | <b>.</b> .5               | <b>6.3</b>          | <b>.</b> .5              | <b>&lt;.</b> 5             | <b>4.4</b>         | 9.>                          | <b>4.5</b>            | <b>&lt;.</b> 5        | <b>&lt;.</b> 5    | <b>4.4</b>             | 6.>            |     | <b>&lt;.5</b> | 9.>           | 7                   | ,<br>,             | ָרָ וּיִנְיּ<br>בּילִייִי | <b>/.</b>           |              | ·.,         |
| <b>BCG</b>               | <b>BCG</b>    | <b>BCG</b>    | <b>Bcg</b>           | meg                 | meg                 | meg                 | mcg                     | <b>BC</b> g        | mcg                | mcg                | mcg                       | mcg                 | mcg                      | <b>BC</b> g                | <b>BC</b> g        | mcg                          | meg                   | <b>B</b> Cg           | <b>BC</b> g       | mcg                    | mcg            |     | BCd           | ) DO          |                     | בי<br>קרות<br>קרות | <b>₹</b>                  | <b>m</b> cg         | acg<br>a     | <b>B</b> cg |
| 2-CHLOROETHYTVINYL ETHER | CHLOROFORM    | CHLOROMETHANE | DIBROMOCHLOROMETHANE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | DICHLORODIFLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 3-DICHLOROPROPENE | METHYLENE CHLORIDE | 1, 1, 2, 2-TETRACHLOROETHANE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROFLUOROMETHANE | VINYL CHLORIDE | 602 | BENZENE       | CHLOROBENZENE | 1 2-DICHLOROBENZENE | 1 2_01@10@08@17@16 |                           | 1,4-DICHLOROBENZENE | EIHILBENZENE | avandor.    |

1400.00 298.00

| 1400.00<br>298.00                                                                                      |                                                                                                                                                       |                                         |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                                        |                                                                                                                                                       | Ton |
| POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND TOTAL ORGANIC CARBON OIL & GREASE AMONIA | NITRATE NITRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS OrthoPO4 PHOSPHORUS CYANIDE CYANIDE free PHENOLS ARSENIC BARIUM CADMIUM CHROMIUM CHROMIUM CHROMIUM |                                         |

SITE 29 CONTINUED

BERYLIUM

|       |                 |          |       |          |                          |                  |         |                  |                      |         |             |           |        |            |          |          |           |          |     | <b>4.4</b>                   | <b>6.7</b>      | 6.>          | ·.5                  | <b>9.</b> ×   | 8.>          | 6.>                      |
|-------|-----------------|----------|-------|----------|--------------------------|------------------|---------|------------------|----------------------|---------|-------------|-----------|--------|------------|----------|----------|-----------|----------|-----|------------------------------|-----------------|--------------|----------------------|---------------|--------------|--------------------------|
| Ng/L  | ng/L            | mq/L     | 8     | mq/L     | mq/L                     | mq/L             | mq 7    | IIQ/L            | OHED                 | mq/L    | mq/L        | ,5        | nd/L   | T/bn       | ng/L     | ng/L     | IIQ.      | mg/L     |     | <b>BC</b> d                  | mc <sub>g</sub> | mcg          | mcg                  | BCG           | mcq.         | acg.                     |
| BORON | BORON DISSOLVED | CHLORIDE | COLOR | FLOURIDE | RESIDUE FILTERABLE (TDS) | RESIDUE NON (SS) | RESIDUE | RESIDUE VOLATILE | SPECIFIC CONDUCTANCE | SULFATE | SURFACTANTS | TURBIDITY | COBALT | MOLYBDENUM | TITANIUM | VANADIUM | ALK TOTAL | SULFIDES | 601 | <b>BROMODI CHLOROMETHANE</b> | BROMOFORM       | BROMOMETHANE | CARBON TETRACHLORIDE | CHLOROBENZENE | CHLOROETHANE | 2-CHLOROETHYIVINYL ETHER |

| SITE 29 CONTINUED          |             |                | AVERAGE        |
|----------------------------|-------------|----------------|----------------|
| CHLOROFORM                 | mcg.        | <b>&lt;.3</b>  | <b>6.3</b>     |
| CHLOROMETHANE              | mcg         | <b>6.8</b>     | <b>8.</b> %    |
| DIBROMOCHLOROMETHANE       | mcg         | 6.>            | <b>6.</b> >    |
| 1,2-DICHLOROBENZENE        | mcg.        | 4              | ₽              |
| 1,3-DICHLOROBENZENE        | ncg         | <b>&lt;.5</b>  | <b>&lt;.</b> 5 |
| 1,4-DICHLOROBENZENE        | meg         | <b>&lt;.7</b>  | <b>6.7</b>     |
| DICHLORODI FLUOROMETHANE   | ncg         | 6.>            | <b>6.</b> >    |
| 1,1-DICHLOROETHANE         | mcg         | <b>7.</b> 4    | <b>4.</b>      |
| 1,2-DICHLOROETHANE         | mcg         | <b>&lt;.3</b>  | <b>6.3</b>     |
| 1,1-DICHLOROETHENE         | neg         | <b>&lt;.3</b>  | <b>*.</b> 3    |
| TRANS-1, 2-DICHLOROETHENE  | meg         | <b>&lt;.</b> 5 | <b>.</b> .5    |
| 1,2-DICHLOROPROPANE        | meg         | <b>&lt;.3</b>  | <b>*.</b> 3    |
| CIS-1, 3-DICHLOROPROPENE   | necg        | <b>&lt;.5</b>  | <b>*.</b> 5    |
| TRANS-1, 3-DICHLOROPROPENE | mcg         | <b>&lt;.5</b>  | <b>*.</b> 5    |
| METHYLENE CHLORIDE         | <b>m</b> cg | <b>*.4</b>     | <b>*.</b> *    |
| 1,1,2,2-TETRACHLOROETHANE  | neg         | 9.>            | <b>9.</b> >    |
| 1,1,1-TRICHLOROETHANE      | neg         | <b>&lt;.5</b>  | <b>.</b> .5    |
| 1,1,2-TRICHLOROETHANE      | meg         | <b>&lt;.5</b>  | <b>.</b> .5    |
| TRICHLOROETHYLENE          | mcg         | <b>&lt;.5</b>  | <b>&lt;.</b> 5 |
| TRICHLOROFLUOROMETHANE     | meg         | <b>^.4</b>     | <b>4.4</b>     |
| VINYL CHLORIDE             | mcg         | 6.>            | 6.>            |
| 602                        |             |                |                |
| BENZENE                    | ncq.        | <.5            | <b>**</b> 2    |
| CHLOROBENZENE              | meg         | <b>9.</b> >    | <b>9.</b> °    |
| 1,2-DICHLOROBENZENE        | meg         | <1             | ₽              |
| 1,3-DICHLOROBENZENE        | mcg         | <.5            | <b>&lt;.</b> 5 |
| 1,4-DICHLOROBENZENE        | meg         | <b>&lt;.7</b>  | <b>7.</b> >    |
| ETHYLBENZENE               | ncg         | <b>&lt;.3</b>  | <b>*.3</b>     |
| TOLUENE                    | mcg         | <b>&lt;.3</b>  | <b>&lt;.3</b>  |

| <.3<br>250.00<br>19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>6.3</b>                                                                |                                  |                                                                   | <10        | (100<br>(100 | <100       | <100                   | 558.00<br><20           | <100     | <100<br><100 | <10 | <10<br><100 | 49.50 | 07:7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <100                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|------------|--------------|------------|------------------------|-------------------------|----------|--------------|-----|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| mg/L <.3<br>mg/L 250.00<br>mg/L 19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1975 (3.3 1.3 1.4 1.7 1.3 1.4 1.7 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 |                                  | 1, pa<br>1, pa<br>1, pa<br>1, pa                                  |            | ug/L <100    |            |                        | ug/L 558.00<br>ug/L <20 |          |              |     |             |       | 1,20<br>17,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>19,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>10,00<br>1 | ug/L <100           |
| SITE 30 POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND TITTLE CARE OF THE C |                                                                           | JELDAHL NITROGEN<br>RUS orthoPO4 | CYANIDE CYANIDE CYANIDE FOR THE CYANIDE CYANIDE COMPANY (FPA 604) | (MTH. 420) |              | <b>S</b> . | ITUM HEXAVALLENT<br>SR | IRON                    | MAGANESE |              | 5   | SILVER L    | M).   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ICP TOTALS ALUMINUM |

| SITE 30 CONTINUED                  |        |                 | AVERAGE     |
|------------------------------------|--------|-----------------|-------------|
| BERYLIUM                           | ng/L   | <100            | <100        |
| BORON                              | ng/L   |                 |             |
| BORON DISSOLVED                    | ng/L   |                 |             |
| CHLORIDE                           | mg/L   |                 |             |
| COLOR                              | 8      |                 |             |
| FLOURIDE                           | mg/L   |                 |             |
| RESIDUE FILTERABLE (TDS)           |        |                 |             |
| RESIDUE NON (SS)                   | III V  |                 |             |
| RESIDUE                            | mg/L   |                 |             |
| RESIDUE VOLATILE                   | mg/L   |                 |             |
| SPECIFIC CONDUCTANCE               | MAHO   |                 |             |
| SULFAITE                           | mg/L   |                 |             |
| SURFACTANTS                        | T/bu   | <.1             | <.1         |
| TURBIDITY                          | 12     |                 |             |
| COBALT                             | ng/L   | <100            | <100        |
| MOLYBDENUM                         | ng/L   | <100            | <100        |
| TITANIUM                           | ng/L   | <100            | <100        |
| VANADIUM                           | T/bn   | <100            | <100        |
| ALK TOTAL                          | IIId/I |                 |             |
| SULFIDES                           | mg/L   |                 |             |
| METHYLENE CHLORIDE                 | ng/L   | 4.30            | 4.30        |
| TRICHLOROFLUOROMETHANE             |        | 4.70            | 4.70        |
| 601                                |        |                 |             |
| BROWODI CHLOROMETHANE<br>PROMOEORM | mcg    | 4.7             | 4.4         |
| BROWOMETHANE                       |        | ··>             | 6.9         |
| CARBON TETRACHLORIDE               | mcg.   | \$* <b>&gt;</b> | <b>?</b> *2 |

| CHI ORORENZI ENE            |             | <b>Y</b> ,     | '              |
|-----------------------------|-------------|----------------|----------------|
| CIT OBOETENNE               | 5 C         | ) o            | •              |
|                             | S S         | 0.7            | ×.0            |
| 2-CHLOROETHYIVINYL ETHER    | ncg.        | 6.>            | <b>6. &gt;</b> |
| CHLOROFORM                  | mcg         | <b>&lt;.</b> 3 | <.3            |
| CHLOROMETHANE               | mcg         | 8.>            | 8.             |
| <b>DIBROMOCHLOROMETHANE</b> | mcg         | 6.5            | 6.>            |
| 1,2-DICHLOROBENZENE         | mcg         | <1             | 7              |
| 1,3-DICHLOROBENZENE         | mcg         | <b>&lt;.</b> 5 | <.5            |
| 1,4-DICHLOROBENZENE         | mcg         | <i>c.</i> >    | <b>&lt;.7</b>  |
| DI CHLORODI FLUOROMETHANE   | ncg.        | 6.>            | <b>6.</b> ×    |
| 1,1-DICHLOROETHANE          | mcg         | <b>4.4</b>     | <b>4.4</b>     |
| 1,2-DICHLOROETHANE          | mcg.        | <b>&lt;.3</b>  | <.3            |
| 1,1-DICHLOROETHENE          | mcg.        | <b>&lt;.3</b>  | <b>&lt;.3</b>  |
| TRANS-1, 2-DICHLOROETHENE   | ncg.        | <.5            | <.5            |
| 1,2-DICHLOROPROPANE         | mcg.        | <b>&lt;.3</b>  | <b>&lt;.3</b>  |
| CIS-1, 3-DICHLOROPROPENE    | mcg         | <b>&lt;.</b> 5 | <.5            |
| TRANS-1, 3-DICHLOROPROPENE  | mcg         | <b>&lt;.</b> 5 | <.5            |
| METHYLENE CHLORIDE          | ncg.        | <b>***</b>     | <b>4.4</b>     |
| 1,1,2,2-TETRACHLOROETHANE   | mcg         | 9.>            | <b>9.</b> ×    |
| 1,1,1-TRICHLOROETHANE       | mcg.        | <b>&lt;.</b> 5 | <.5            |
| 1,1,2-TRICHLOROETHANE       | mcg         | <b>&lt;.</b> 5 | <.5            |
| TRICHLOROETHYLENE           | mcg         | <b>&lt;.</b> 5 | <.5            |
| TRICHLOROFLUOROMETHANE      | mcg.        | 4.4            | <b>4.4</b>     |
| VINYL CHLORIDE              | mcg         | 6.>            | <b>6.</b> >    |
| 602                         |             |                |                |
| BENZENE                     | <b>BC</b> d | <b>&lt;.</b> 5 | <.5            |
| CHLOROBENZENE               | BCd         | 9*>            | 9.             |
| 1,2-DICHLOROBENZENE         | ncg.        | <b>4</b> 1     | ₹              |
| 1,3-DICHLOROBENZENE         | mcg         | <b>&lt;.</b> 5 | <.5            |
| 1,4-DICHLOROBENZENE         | ncg.        | <b>7.</b> >    | <b>7.</b> >    |
| ETHYLBENZENE                | mcg         | <b>&lt;.3</b>  | <b>&lt;.3</b>  |
| TOLUENE                     | <b>ac</b> g | <b>&lt;.3</b>  | <b>&lt;.3</b>  |

SITE 30 CONTINUED

| AVERAGE | 1.30         | 500.00                 | 36.00                    | ERR                  | 2.90         | ERR     | ERR     | ERR     | ERR                     | ERR                  | ERR        | ERR     | ERR          | <10               | ERR                | <100    | <100   | <100    | <100     | ERR                 | <100   | 3775.00 | <20  | <100      | <1      | <100   | <10      | <10    | 131.00 | 49.40   | 7.50      | <100     | <100     |
|---------|--------------|------------------------|--------------------------|----------------------|--------------|---------|---------|---------|-------------------------|----------------------|------------|---------|--------------|-------------------|--------------------|---------|--------|---------|----------|---------------------|--------|---------|------|-----------|---------|--------|----------|--------|--------|---------|-----------|----------|----------|
|         | 1.30         | 200.00                 | 36.00                    |                      | 2.90         |         |         |         |                         |                      |            |         |              | <10               |                    | <100    | <100   | <100    | <100     |                     | <100   | 3775,00 | <20  | <100      | ₽       | <100   | <10      | <10    | 131.00 | 49.40   | 7.50      | <100     | <100     |
| T/bn    | mg/L         | mg/L                   | 加九                       | 邓九                   | mg/L         | mg/L    | mg/L    | In A    | mq/L                    | mg/L                 | mg/L       | mg/L    | mg/L         | ng/L              | ng/L               | ng/L    | ng/L   | ng/L    | ng/L     | ng/L                | ng/L   | ng/L    | 7/bn | ng/L      | ng/L    | T/bn   | ng/L     | ng/L   | ng/L   | mg/L    | IIIQ/L    | ı        | ng/L     |
| SITE 31 | POT EXTR HYD | CHEMICAL OXYGEN DEMAND | BIOCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON | OIL & GREASE | AMMONIA | NITRATE | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS ortho PO4 | PHOSPHORUS | CYANIDE | CYANIDE free | PHENOLS (EPA 604) | PHENOLS (MTH. 420) | ARSENIC | BARIUM | CADMIUM | CHROMIUM | CHROMIUM Hexavalent | COPPER | IRON    | LEAD | MANGANESE | MERCURY | NICKEL | SELENIUM | SILVER | ZINC   | CALCIUM | MAGNESIUM | ALUMINUM | BERYLIUM |

| Dissolved<br>IDE           |       |               |      |
|----------------------------|-------|---------------|------|
|                            | ng/L  |               |      |
|                            | mg/L  |               |      |
|                            | 8     |               |      |
|                            | mg/L  |               |      |
| le (TDS)                   | mg/L  |               |      |
| Non (SS)                   | 配孔    |               |      |
|                            | mg/L  |               |      |
| Volatile                   | mg/L  |               |      |
| Conductance                | umho  |               |      |
|                            | ing/L |               |      |
| SURFACTANTS                | mg/L  | 1.30          |      |
| TURBIDITY                  | 3     |               |      |
| COBALT                     | ng/L  | <100          | <100 |
| MOLYBDENUM                 | ng/L  | <100          | <100 |
| TITANIUM                   | ng/L  | <100          | ❖    |
| VANADIUM                   | ng/L  | <100          | <100 |
| ت                          | ng/L  |               |      |
|                            | ng/L  |               |      |
| HLORIDE                    | mcg   |               |      |
|                            | mcg   |               |      |
| METHYLENE CHLORIDE         | ng/L  | 5.60          |      |
| TRI CHLOROFILUOROMETHANE   |       | 4.10          |      |
| CHLOROFORM                 | mcg   | <b>&lt;.3</b> |      |
| 601                        |       |               |      |
| LOROMETHANE                | mcg   | <b>4.4</b>    |      |
|                            | mcg   | <b>&lt;.7</b> |      |
| BROMOMETHIANE              | mcg   | 6.>           |      |
| CARBON TETRACHLORIDE       | ncg   | <.5           |      |
| CHLOROBENZENE              | ncg   | <b>9.</b> >   |      |
| •                          | mcg   | 6.>           |      |
| 2-CHLOROETHYIVINYL ETHER 1 | mcg   | 6.>           |      |
| CHLOROFORM                 | mcg   | <b>&lt;.3</b> |      |

| **************************************                                                     | 6.9                                           | 4                                                        |                                                                         | . ^ ^<br>. ? 4.                             | . v<br>. v                                      | \<br>\<br>\<br>\<br>\<br>\                  | <pre></pre> <pre>&lt; &lt; &lt;</pre> | <pre></pre>                                                                                       |
|--------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <pre></pre>                                                                                | 7.><br>6.9                                    | 4. w. w.                                                 | <br>                                                                    |                                             | <b>^.</b> 5<br><b>^.</b> 6                      | <b>^.</b> 5                                 | <.5<br><.4<br><.9                                                                                                     | <.5 <.6 <.7 <.3                                                                                   |
|                                                                                            | NE mcg                                        |                                                          | KOETHENE mcg<br>INE mcg<br>PROPANE mcg                                  | PROPEN                                      | ETHAN                                           |                                             | THIANE mcg                                                                                                            | mcg<br>mcg<br>ane mcg<br>ane<br>ane<br>mcg                                                        |
| 601<br>CHLOROMETHANE<br>DIBROMOCHLOROMETHANE<br>1,2-DICHLOROBENZENE<br>1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE<br>DICHLOROPELJOROMETHANE | 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE 1, 2-DICHLOROPROPANE CIS-1, 3-DICHLOROPROPANE | TRANS-1,3-DICHLOROPROPEN METHYLENE CHLORIDE | 1,1,2,2-tetrachloroethan<br>tetrachloroethylene | 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE<br>TRICHLOROFLUOROMEHTANE<br>VINYL CHLORIDE                                                         | BENZENE CHLOROBENZENE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE ETHYLBENZENE |

SITE 31 CONTINUED

| 2.90<br>600.00<br>41.00<br>50.00                                                  | 5.10<br>72.00<br>0.12<br><.02<br>80.00<br>5.60<br>0.01<br>ERR                                                     | 4.30<br>242.50<br>(100<br>231.00<br>(100<br>937.00<br>937.00<br>360.50<br>20.00                       | <1<br><100<br><10<br><100<br><17.95<br>9.70<br>ERR<br>ERR<br>ERR<br>ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   |                                                                                                                   | ₽                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.00                                                                              | 5.10                                                                                                              | <1<br>100.00<br>406.00                                                                                | 49.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.80<br>600.00<br>53.00<br>50.00                                                  | 72.00<br>0.12<br>6.02<br>80.00<br>5.60<br>15.00                                                                   | 4.30<br>385.00<br><100<br>231.00<br><100<br>937.00<br><100<br>315.00<br><100                          | <100<br><100<br><10<br><100<br>46.70<br>8.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                   |                                                                                                                   |                                                                                                       | T fin |
| POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON | OIL & GREASE AMMONIA NITRATE NITRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS ortho PO4 PHOSPHORUS CYANIDE CYANIDE free | PHENOLS (EPA 604) PHENOLS (MTH. 420) ARSENIC BARIUM CADMIUM CHROMIUM CHROMIUM CHROMIUM LEAD MANGANESE | MERCURY NICKEL SELENIUM SILVER ZINC CALCIUM MAGNESIUM POTASSIUM SODIUM ICP METALS ALUMINUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

SITE 32

| BERYLIUM<br>BORCN          | ng/L   | <100<br>700.00 |         | •   | <100           |
|----------------------------|--------|----------------|---------|-----|----------------|
| BORON Dissolved            | ng/L   |                |         | •   | ERR            |
| CHLORIDE                   | ing/L  | 51.00          |         |     | 51.00          |
| FLUORIDE                   | 3 5    |                |         |     | ERR            |
| Residue Filterable (TDS)   |        | 423.00         |         | 7   | 423.00         |
| Residue Non (SS)           |        |                |         |     | ERR<br>ERR     |
| Residue                    | III T  | 461.00         |         | 4   | 461.00         |
| Residue Volatile           | mg/L   | 749.00         |         |     | 749.00         |
| Specfic Conductance        | orum   | 1204.00        |         | 12  | 1204.00        |
| SULFAITE                   | mg/L   | 84.00          |         |     | 84.00          |
| SURFACTANTS                | mg/L   | 0.30           | 0.50    |     | 0.30           |
| TURBIDITY                  | 12     |                |         |     | ERR            |
| CORALT                     | ng/L   | <100           |         | ⊽   | <100           |
| MOLYBDENUM                 | nd/L   | <100           |         | ₩.  | 100            |
| TITANIUM                   | ng/L   | <100           |         | . ₩ | <100           |
| VANADIUM                   | 7/bn   | <100           |         | . ₩ | 100            |
| ALK TOTAL                  | mg/L   | 427.00         |         | 4   | 427.00         |
| SULFIDES                   | mq/L   | 0.40           |         |     | 0.40           |
| 1,3-DICHLOROBENZENE        |        |                |         |     | •<br>•         |
| METHYLENE CHLORIDE         | nd/T   | 15.00          | 5971.00 | 29  | 993.00         |
| <b>TETRACHLOROETHYLENE</b> |        | 153.00         |         |     | 153.00         |
| BINGZNE                    |        |                |         |     | ERR            |
| 1,4-DICHLOROBENZENE        | ng/L   | 4.80           | 4.00    |     | 4.40           |
| ETHYL BENZENE              | ng/L   | 308.00         |         | (*) | 308.00         |
| TOLUENE                    | 7/bn   | 356.00         |         | M   | 356.00         |
| CIS-1,2-DICHLOROETHENE     | i Bicd | 30.00          |         | •   | 30.00          |
| CHLOROBENZENE              | mcg    |                |         |     |                |
| 601                        |        |                |         |     |                |
| BROMODICHLOROMETHANE       | mcd    | <b>4.4</b>     |         |     | 4.4            |
| BROMOFORM                  | mcg    | <b>7.</b> >    |         |     | <b>7.</b> >    |
| BROMOMETHANE               | ncg    | 6.>            |         |     | 6.9            |
| CARBON TETRACHLORIDE       | mcg    | <b>&lt;.</b> 5 |         |     | <b>&lt;.</b> 5 |

SITE 32 CONTINUED

| SITE 32 CONTINUED CHLOROBENZENE CHLOROETHANE                                                                                                                   | incg<br>incg                           | 9.><br>6.>                          | AVERAGE                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------|------------------------------------------|
| 2-CHLOROETHYTVINYL ETHER<br>CHLOROFORM<br>CHLOROMETHANE                                                                                                        | mcg<br>mcg                             | 6.<br>8.<br>8.                      | 5 m &                                    |
| DIBROMOCHLOROMETHANE<br>1, 2-DICHLOROBENZENE<br>1, 3-DICHLOROBENZENE                                                                                           | acg<br>acg                             | <.9 <!</th <th>4.9<br/>4.5</th>     | 4.9<br>4.5                               |
| 1,4-DICHLOROBENZENE<br>DICHLOROPFLUOROMETHANE<br>1,1-DICHLOROETHANE                                                                                            | mcg<br>mcg                             | 7. \<br>0. \<br>4. \                | ., ., ., ., ., ., ., ., ., ., ., ., ., . |
| 1,1-DICHLOROETHENE<br>TRANS-1,2-DICHLOROETHENE<br>1,2-DICHLOROPROPANE                                                                                          | 60m<br>1000<br>1000<br>1000            |                                     |                                          |
| TRANS-1, 3-DICHLOROPROPANE<br>TRANS-1, 3-DICHLOROPROPEN<br>METHYLENE CHLORIDE<br>1, 1, 2, 2-TETRACHLOROETHAN<br>TETRACHLOROETHYLENE<br>1, 1, 1-TRICHLOROETHANE | mcg<br>mcg<br>mcg<br>mcg               | v v 4 v v v                         | , , , , , , , , , , , , , , , , , , ,    |
| 1,1,2-TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROFLUOROMEHTANE VINYL CHLORIDE                                                                                  | ncg<br>ncg<br>ncg                      | <br><br><br>                        | ^ ^ ^ ^<br>4.0                           |
| 602 BENZENE CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE ETHYLBENZENE FITHYLBENZENE TOLUENE CIS-1, 2-DI CHLOROETHENE                              | ### ################################## | <.5 <.6 <.1 <.5 <.7 <.3 <.3 <.3 <.3 | 6.5<br>6.5<br>6.3<br>6.3<br>6.3          |

| AVERAGE | 4.60                                   | 45.00                                         | 6.20         | ERR     | ERR     | ERR                     | ERR                  | ERR     | ERB FERB     | 647.00            | 42.00              | <100    | 114.00 | <100    | <100     | ERR                 | <100   | 1692.00 | 67.00 | <100      | <b>^1</b> | <100   | <10      | <10    | 217.00 | 52.00   | 8.50      | ERR       | ERR                  | ERR        |
|---------|----------------------------------------|-----------------------------------------------|--------------|---------|---------|-------------------------|----------------------|---------|--------------|-------------------|--------------------|---------|--------|---------|----------|---------------------|--------|---------|-------|-----------|-----------|--------|----------|--------|--------|---------|-----------|-----------|----------------------|------------|
|         | 4.60                                   | 45.00                                         | 6.20         |         |         |                         |                      |         |              | 647.00            | 42.00              | <100    | 114.00 | <100    | <100     |                     | <100   | 1692.00 | 67.00 | <100      | <b>†</b>  | <100   | <10      | <10    | 217.00 | 52.00   | 8.50      |           |                      |            |
|         |                                        |                                               | 75           | T Gar   |         | N P                     | Ing/L                |         |              | ng/L              | ng/L               | ng/L    | 7/bn   | ng/L    | ng/T     | ng/L                | ng/L   | ng/L    | ng/L  | ng/L      | ng/L      | ng/L   | ng/L     | ng/L   | ng/L   | Ing/L   | mg/L      | mg/L      | 175                  | 1/5        |
| SITE 33 | POT EXTR HYD<br>CHEMICAL OXYGEN DEMAND | BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON | OIL & GREASE | AMMONIA | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS ortho PO4 | CYANIDE | CYANIDE free | PHENOLS (EPA 604) | PHENOLS (MTH. 420) | ARSENIC | BARIUM | CADMIUM | CHROMIUM | CHROMIUM Hexavalent | COPPER | IRON    | LEAD  | MANGANESE | MERCURY   | NICKEL | SELENIUM | SILVER | ZINC   | CALCIUM | MAGNESIUM | POTASSIUM | SOLUM<br>100 Memar 6 | ICF METALS |

| SITE 33 CONTINUED        |             |                | AVERAGE        |
|--------------------------|-------------|----------------|----------------|
| BERYLIUM                 | nd/L        | <100           | <100           |
| BORON                    | ng/L        |                | ERR            |
| BORON Dissolved          | ng/L        |                | ERR            |
| CHLORIDE                 | mg/L        |                | ERR            |
| COLOR                    | 5           |                | ERR            |
| FLUORIDE                 |             |                | ERR            |
| Residue Filterable (TDS) |             |                | ERR            |
| Residue Non (SS)         | mg/L        |                | ERR            |
| Residue                  | 点へ          |                | ERR            |
| Residue Volatile         | mg/L        |                | ERR            |
| Specfic Conductance      | ortun       |                | ERR            |
| SULFATE                  |             |                | ERR            |
| SURFACTANTS              | mg/L        | 3.60           | 3.60           |
| TURBIDITY                | 2           |                | ERR            |
| COBALT                   | 7/bn        | <100           | <100           |
| MOLYBDENUM               | ng/L        | <100           | <100           |
| TITANIUM                 | ng/I        | 117.00         | 117.00         |
| VANADIUM                 | ng/T        | <100           | <100           |
| ALK TOTAL                | mg/L        |                |                |
| SULFIDES                 | mg/L        |                |                |
| CHLOROBENZENE            | mcg         | 9.>            | <b>9.</b>      |
| METHYLENE CHLORIDE       | ng/T        | 29.00          | 29.00          |
| BENZENE                  | mcg         | <b>&lt;.</b> 5 | <b>&lt;.</b> 5 |
| CHLOROFORM               | mcg         | <b>&lt;.3</b>  | <b>6.3</b>     |
| 601                      |             |                |                |
| BROMOD I CHLOROMETHANE   | mcg         | <b>**</b>      | 4.4            |
| BROMOFORM                | mcg         | 7.>            | <b>7.</b>      |
| CARBON TETRACHLORIDE     | ာ်<br>ရောင် | ۲.۶<br>۲.۶     | \ .<br>.5      |
|                          |             |                |                |

| CHLOROBENZENE              | mcg  | <b>4.6</b>     | <b>9.</b> ×     |
|----------------------------|------|----------------|-----------------|
| CHLOROETHANE               | ncg  | 6.>            | 6.>             |
| 2-CHLOROETHYIVINYL ETHER   | mcg  | 6.>            | 6.>             |
| CHLOROFORM                 | mcg  | <b>&lt;.3</b>  | <b>6.3</b>      |
| CHLOROMETHANE              | mcg  | <b>6.8</b>     | 8.              |
| DIBROMOCHLOROMETHANE       | meg  | 6.>            | 6.>             |
| 1,2-DICHLOROBENZENE        | mcg  | ₽              | ₽               |
| 1,3-DICHLOROBENZENE        | mcg  | <b>&lt;.5</b>  | <b>&lt;.</b> 5  |
| 1,4-DICHLOROBENZENE        | meg  | <b>6.7</b>     | <b>7.</b> >     |
| DICHLORODFLUOROMETHANE     | mcg  | 6.>            | 6.>             |
| 1,1-DICHLOROETHANE         | mcg  | <b>*.</b> *    | 4.4             |
| 1,2-DICHLOROETHANE         | mcg  | <b>&lt;.</b> 3 | ς. <sub>3</sub> |
| 1,1-dichloroethene         | mcg  | <b>&lt;.3</b>  | <b>6.</b> 3     |
| TRANS-1, 2-DICHLOROETHENE  | mcg. | <b>&lt;.</b> 5 | <b>.</b> .5     |
| 1,2-DICHLOROPROPANE        | mcg  | <b>&lt;.3</b>  | <b>6.</b> 3     |
| CIS-1, 3-DICHLOROPROPANE   | mcg  | <b>&lt;.</b> 5 | <b>&lt;.</b> 5  |
| TRANS-1, 3-DICHLOROPROPEN  | meg  | <b>&lt;.</b> 5 | <b>&lt;.</b> 5  |
| METHYLENE CHLORIDE         | meg  | <b>*.4</b>     | ٧.4             |
| 1,1,2,2-TETRACHLOROETHAN   | mcg  | <b>&lt;.</b> 5 | <b>.</b> .5     |
| <b>TETRACHLOROETHYLENE</b> | mcg  | <b>*.</b> 6    | 9.>             |
| 1,1,1-TRICHLOROETHANE      | meg  | <b>&lt;.</b> 5 | <b>.</b> .5     |
| 1,1,2-TRICHLOROETHANE      | mcg  | <b>&lt;.</b> 5 | <b>.</b> .5     |
| TRICHLOROETHYLENE          | mcg  | <b>&lt;.</b> 5 | <b>.</b> .5     |
| TRI CHLOROFILJOROMEHTANE   | mcg  | <.4            | <b>4.4</b>      |
| VINYL CHLORIDE             | mcg  | 6.>            | <b>6.</b> >     |
| 602                        | mq/L | 550.00         | 550.00          |
| BENZENE                    | mcg  | ٠.5            | <br>5           |
| CHLOROBENZENE              | mcg  | <b>9.</b> >    | 9.              |
| 1,2-DICHLOROBENZENE        | mcg. | 41             | ₹               |
| 1,3-DICHLOROBENZENE        | mcg  | <b>&lt;.</b> 5 | <b>&lt;.5</b>   |
| 1,4-DICHLOROBENZENE        | mcg  | <b>6.7</b>     | <b>7.</b> >     |
| ETHYLBENZENE               | mcg  | <b>&lt;.3</b>  | ٠.<br>د.        |
| TOLUENE                    | mcg  | <b>ć.</b> 3    | <b>&lt;.</b> 3  |

| <100          | ERR                     | ERR | ERR | ERR                                               | ERR               | ERR | ERR         | ERR | 1650.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LKK<br>100 | 7100 | 13000-00 | <100          | ERR | ERR      | 11.00  | 12.00                   | 7.50 | 7.70                       | 4. \                    | 6'>          | \$ * <b>?</b>            |
|---------------|-------------------------|-----|-----|---------------------------------------------------|-------------------|-----|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----------|---------------|-----|----------|--------|-------------------------|------|----------------------------|-------------------------|--------------|--------------------------|
| <100          | <b>3</b> . <b>1</b> . 1 | •   |     |                                                   |                   | . 7 | 0           |     | 1650.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |      | 13000.00 |               |     | . 7      | 11.00  |                         | 7.50 | 7.70                       | <b>7.4</b>              | 6.5          | <.5                      |
| BERYLIUM ug/L | BORON Dissolved ug/L    |     |     | Residue Filterable (TDS) mg/L<br>Residue Non (SS) | Residue mg/L mg/L |     | Conductance |     | THE TOTAL OF THE T |            |      |          | VANADIUM UQ/L | ے   | SULFIDES | ETHENE | METHYLENE CHLORIDE ug/L |      | 1,1,1-TRICHLOROETHANE ug/L | BROWDFORM mcg BROWDFORM | BROMOMETHANE | CARBON TETRACHLORIDE mcg |

SITE 34 CONTINUED

| <b>9.</b> ×   | 6.>          | 6.>                      | £*>        | 8.>           | 6.>                  | ₽                   | <b>&lt;.</b> 5      | <b>7.</b> >         | 6.>                    | <b>*.4</b>         | <b>&lt;.3</b>      | <b>&lt;.3</b>      | <b>&lt;.5</b>             | <b>6.3</b>          | <.5          | <.5<br>.5   | <b>*</b> **        | <.5<br><.5               | 9.>                 | <b>.</b> .5           | <b>&lt;.5</b>         | <b>.</b> .5       | ٧.٧                    | 6.>            |     | <b>&lt;.5</b> | 9.>           | . ₩ | \$°> | 7.7                 | , w.         | £.>         |
|---------------|--------------|--------------------------|------------|---------------|----------------------|---------------------|---------------------|---------------------|------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------|-------------|--------------------|--------------------------|---------------------|-----------------------|-----------------------|-------------------|------------------------|----------------|-----|---------------|---------------|-----|------|---------------------|--------------|-------------|
|               |              |                          |            |               |                      |                     |                     |                     |                        |                    |                    |                    |                           |                     |              |             |                    |                          |                     |                       |                       |                   |                        |                |     |               |               |     |      |                     |              |             |
| <b>9.</b> >   | 6.>          | 6.>                      | <b>6.3</b> | <b>8.</b>     | 6.9                  | ₽                   | <b>&lt;.</b> 5      | <b>7.</b> >         | 6.9                    | <b>4.4</b>         | <b>6.3</b>         | <b>6.3</b>         | < <b>.</b> 5              | <b>&lt;.3</b>       | < <b>.</b> 5 | <b>*.</b> 5 | <b>4.</b> 4        | <.5<br>*.5               | 9.>                 | <.5<br><.5            | <b>*.</b> 5           | <.5               | <b>4.4</b>             | <b>6.</b> %    |     | <.5           | 9.8           | ₽   | <.5  | <.7                 | Ψ.<br>• •    | <b>*.</b> 3 |
| mcg           | mcg          | mcg                      | mcg        | mcg           | mcg.                 | Ecg.                | mcg                 | mcg                 | ncg                    | <b>acg</b>         | mcg                | <b>acg</b>         | mcg                       | meg                 | mcg.         | mcg         | mcg                | mcg                      | mcg                 | mcg                   | mcg                   | mcg               | mcg                    | mcg            |     | mcg           | mcd.          | mcg | mcd  | ECG,                | EC D         | mcg.        |
| CHLOROBENZENE | CHLOROETHANE | 2-CHLOROETHYIVINYL ETHER | CHLOROFORM | CHLOROMETHANE | DIBROMOCHLOROMETHANE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | DICHLORODFLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE |              | z           | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHAN | TETRACHLOROETHYLENE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROFLUOROMEHTANE | VINYL CHLORIDE | 602 | BENZENE       | CHLOROBENZENE |     |      | 1,4-DICHLOROPENZENE | ETHYLBENZENE | TOLUENE     |

SITE 34 CONTINUED

| BERYLIUM BORON BORON BORON BORON BORON BOLON CHIORIDE COLOR FLUORIDE BOLON CU FLUORIDE BOLON CU FLUORIDE BOLON FLUORIDE BOLON FLUORIDE | 7,0         | <100  | •              |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|----------------|
| Í                                                                                                                                      | a/L         |       | <b>&lt;100</b> |
| Í                                                                                                                                      | 1           |       | ERR            |
| ĺ                                                                                                                                      | Ž           |       | ERR            |
| ĺ                                                                                                                                      | g/L         |       | ERR            |
| ĺ                                                                                                                                      | Þ           |       | ERR            |
|                                                                                                                                        | g/L         |       | ERR            |
| (S)                                                                                                                                    | Z/P         |       | ERR            |
| Residue Non (SS) m                                                                                                                     | g/L         |       | ERR            |
|                                                                                                                                        | A/L         |       | ERR            |
|                                                                                                                                        | d/L         |       | ERR            |
|                                                                                                                                        | otel        |       | ERR            |
|                                                                                                                                        | g/L         |       | ERR            |
|                                                                                                                                        | 7           | 18.50 | 18.50          |
|                                                                                                                                        | Þ           |       | ERR            |
|                                                                                                                                        | <u>7</u>    | <100  | <100           |
|                                                                                                                                        | 7           | <100  | <100           |
| TITANIUM                                                                                                                               | 7           | <100  | <100           |
|                                                                                                                                        | 7           | <100  | <100           |
|                                                                                                                                        | g/L         |       | ERR            |
|                                                                                                                                        | Z.          |       | ERR            |
| METHYLENE CHLORIDE                                                                                                                     | 7           | 5.00  | 5.00           |
| L, 3-DICHLOROBENZENE                                                                                                                   | <u>9</u> /L | 37.00 | 37.00          |

| 0.60<br>500.00<br>7.00                                       | 09.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |      |                                  |         |     |   |                    | 100     | 226.00 |         |                     | <100 <100 |      |      | 368.00    |         |        | <10 <10  |        | 230.00 |      |         | 6.20 6.20 |           |        |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|----------------------------------|---------|-----|---|--------------------|---------|--------|---------|---------------------|-----------|------|------|-----------|---------|--------|----------|--------|--------|------|---------|-----------|-----------|--------|
|                                                              | age and the state of the state |                    |      | 7 7 pg                           | 1 7 6m  | 1/5 |   |                    |         |        |         |                     |           |      |      | 7/5n      |         |        | ng/T     | ng/L   | nd/L   | ığν. | mg/L    | Ing/L     | mg/L      | EQ/L   |
| POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON<br>OIL & GREASE<br>AMMONIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NITRATE<br>NITRITE | JELL | PHOSPHORUS OF The PO4 PHOSPHORUS | CYANIDE | **  | _ | PHENOLS (MTH. 420) | ARSENIC | BAKIUM | CADMIUM | CHROMIUM Hexavalent | COPPER    | IRON | LEAD | MANGANESE | MERCURY | NICKEL | SELENIUM | SILVER | ZINC   | 611W | CALCIUM | MAGNESIUM | POTASSIUM | SODIOM |

SITE 36

| SITE 36 CONTINUED        |             |             | AVERAGE        |
|--------------------------|-------------|-------------|----------------|
|                          |             |             |                |
| BERYLIUM                 | 7/bn        | <100        | <100           |
| BORON                    | ng/L        |             | FRR            |
| BORCN Dissolved          | ng/T        |             | NA NA          |
| CHLORIDE                 | 加入          |             |                |
| COLOR                    | 8           |             | ERR            |
| FLUORIDE                 |             |             | ERR            |
| Residue Filterable (TDS) |             |             | ERR            |
| Residue Non (SS)         | T/Du        |             | ERR            |
| Residue                  | mq/L        |             | ERR            |
| Residue Volatile         | mq/L        |             | ERR.           |
| Specfic Conductance      | of the      |             | i a            |
| SULFATE                  | 四人工         |             | TEN COL        |
| SURFACTANTS              | mg/L        | 09-0        | 9              |
| TURBIDITY                | ,5          |             | 20.0           |
| COBALT                   | nd/T        | <100        | ×100<br>×100   |
| MOLYBDENUM               | ug/L        | <100        | 2017           |
| TITANIOM                 | T/bn        | <100        | 7100           |
| VANADIUM                 | ng/L        | <100        |                |
| ALK TOTAL                | T/bill      |             | aa.i           |
| SULFIDES                 |             |             |                |
| TOLUENE                  | ng/L        | 1.40        | 1.40           |
| 601                      |             |             |                |
| BROMODICHLOROMETHANE     | <b>BC</b> d | 4.4         | 7 /            |
| BROMOFORM                | ncg.        | <.7<br><.7  | <>             |
| BROMOMETHANE             | <b>ac</b> g | 6.>         | 6.>            |
| CARBON TETRACHLORIDE     | ncg         | <b>.</b> .5 | <b>&lt;.</b> 5 |

| CHLOROETHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | boar<br>60ar | ۰.<br>و. د     | 9. > >      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------------|
| IVINYL ETHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500          | 0 m 0          |             |
| E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 552          | o. ^           | 0° '        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mcg          | 41_            | 7           |
| 1,3-DICHLOROBENZENE DO 11,4-DICHLOROBENZENE DO 12,4-DICHLOROBENZENE DO 13,4-DICHLOROBENZENE DO 13,4-DICHLOROBENZENE DO 12,4-DICHLOROBENZENE DO 12,4-DI | 60 BCG       | <.5<br>>       | *.5<br>*.5  |
| ANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acg.         | 6.>            | o.* >       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncg.         | <b>4.4</b>     | <b>4.4</b>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mcg          | <b>&lt;.3</b>  | £**         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncg.         | <b>*.</b> 3    | m. >        |
| THENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>B</b> cg  | 5              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncg.         | <b>6.3</b>     | <b>**</b> 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mcg          | <b></b> 5      | <.5         |
| PROPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ncg          | <b>.</b> .5    | ·.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acg.         | 4.             | 4.          |
| CIHAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mcg<br>m     | <br>           | <b>5.</b> > |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncg.         | •.6            | 9.>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>n</b> cg  | <b>&lt;.</b> 5 | <.5         |
| 1,1,2-TRICHLOROETHANE m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ecg.         | <b>.</b> .5    |             |
| TRICHLOROETHYLENE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>B</b> Cg  | <b>&lt;.</b> 5 | 5.5         |
| TRICHLOROFLUOROMENTANE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ncg.         | <b>4.</b>      | <b>*.</b>   |
| VINYL CHLORIDE m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ncg          | 6.>            | 6.>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |             |
| BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ncq.         | <b>.</b> .5    | <.5<br>*.5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o bog        | 9*>            | 9">         |
| 1.2-DICHLOROBENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 4              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ;              | , <u>,</u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <u> </u>       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <b>6.3</b>     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S boar       | · * *          |             |

| SITE 37  POT EXIR HYD  CHEMICAL OXYGEN DEMAND  BIOCHEMICAL OXYGEN DEMAN | mg/L<br>mg/L<br>mg/L | 70.40<br>3250.00<br>981.00 | AVERAGE<br>70.40<br>3250.00<br>981.00  |
|-------------------------------------------------------------------------|----------------------|----------------------------|----------------------------------------|
| IOTAL ORGANIC CARBON<br>DIL & GREASE                                    | mg/L                 | 70.40                      | ERR 70.40                              |
|                                                                         | mg/L                 |                            | ERR                                    |
|                                                                         |                      |                            | ERR                                    |
| TOTAL KJELDAHL NITROGEN                                                 | mg/L                 |                            | ERR                                    |
| PHOSPHORUS ortho PO4                                                    |                      |                            | ERR                                    |
|                                                                         | mg/L                 |                            | ERR                                    |
|                                                                         | ng/L                 |                            | ERR                                    |
| (EPA 604)                                                               | ng/L                 |                            | ERR                                    |
| 420)                                                                    | ng/L                 | 112.00                     | 112.00                                 |
|                                                                         | ng/L                 | <100                       | <100                                   |
|                                                                         | ng/L                 | 124.00                     | 124.00                                 |
|                                                                         | ng/L                 | <100                       | <100                                   |
| •                                                                       | ng/I.                | \$100<br>\$100             | <100<br>                               |
| Hexavalent                                                              | ng/L                 |                            | ERR                                    |
|                                                                         | ng/L                 | 105.00                     | 105.00                                 |
|                                                                         | ng/L                 | 2148.00                    | 2148.00                                |
|                                                                         | ng/L                 | 206.00                     | 206.00                                 |
|                                                                         | ng/L                 | <100                       | <100                                   |
|                                                                         | ng/L                 | ₽                          | 4                                      |
|                                                                         | ng/T                 | <100                       | <100                                   |
|                                                                         | ng/L                 | <10                        | <10                                    |
|                                                                         | ng/L                 | 20.00                      | 20.00                                  |
|                                                                         | ng/L                 | 692.00                     | 692.00                                 |
|                                                                         | mg/L                 | 53.90                      | 53.90                                  |
|                                                                         | mg/L                 | 9.30                       | 9.30                                   |
|                                                                         |                      |                            | ERR                                    |
|                                                                         |                      |                            | DKR<br>T                               |
|                                                                         |                      | 645 00                     | ERR<br>645 OO                          |
|                                                                         | ا<br>ا               | >>                         | >> · · · · · · · · · · · · · · · · · · |

| SITE 37 CONTINUED          |                 |                | AVERAGE        |
|----------------------------|-----------------|----------------|----------------|
| CHLOROBENZENE              | meg             | <b>6.6</b>     | <b>6.</b> 6    |
| CHLOROETHANE               | mcg             | 6.>            | 6.>            |
| 2-CHLOROETHYIVINYL ETHER   | mcg.            | 6.>            | 6.>            |
| CHLOROFORM                 | mcg             | <b>&lt;.</b> 3 | <b>&lt;.3</b>  |
| CHLOROMETHANE              | mcg             | 8.>            | <b>8.</b>      |
| DIBROMOCHLOROMETHANE       | mcg             | 6.>            | 6.             |
| 1,2-DICHLORÓBENZENE        | mcg             | 4              | ₽              |
| 1,3-DICHLOROBENZENE        | mcg             | <b>&lt;.</b> 5 | <b>.</b> .5    |
| 1,4-DICHLOROBENZENE        | mc <sub>g</sub> | <b>7.</b> >    | <b>7.</b> >    |
| DICHLORODFLUOROMETHANE     | mcg             | 6.>            | 6.>            |
| 1,1-DICHLOROETHANE         | mc <sub>g</sub> | <b>&lt;.4</b>  | <b>4.4</b>     |
| 1,2-DICHLOROETHANE         | mc <sub>Q</sub> | <b>&lt;.</b> 3 | <b>6.</b> 3    |
| 1,1-DICHLOROETHENE         | mcg             | <b>&lt;.3</b>  | <b>6.3</b>     |
| TRANS-1, 2-DICHLOROETHENE  | mcg             | <b>&lt;.</b> 5 | <b>&lt;.</b> 5 |
| 1,2-DICHLOROPROPANE        | mcg             | <b>&lt;.3</b>  | <b>6.3</b>     |
| CIS-1, 3-DICHLOROPROPANE   | mcg             | <b>&lt;.</b> 5 | <.5<br>5.5     |
| TRANS-1, 3-DICHLOROPROPEN  | mcg             | <b>&lt;.</b> 5 | <b>.</b> .5    |
| METHYLENE CHLORIDE         | mcg             | <b>&lt;.4</b>  | <b>4.4</b>     |
| 1,1,2,2-TETRACHLOROETHAN   | meg             | <b>&lt;.</b> 5 | <b>&lt;.</b> 5 |
| <b>TETRACHLOROETHYLENE</b> | mcg             | 9*>            | <b>9.</b> ×    |
| 1,1,1-TRICHLOROETHANE      | meg             | <b>&lt;.</b> 5 | <b>&lt;.</b> 5 |
| 1,1,2-TRICHLOROETHANE      | meg             | <b>&lt;.</b> 5 | <b>.</b> .5    |
| TRI CHLOROETHYLENE         | ncg             | <b>&lt;.</b> 5 | <b>&lt;.</b> 5 |
| TRICHLOROFLUOROMENTANE     | mcg             | <b>***</b>     | <b>4.4</b>     |
| VINYL CHLORIDE             | mcg             | 6.>            | <b>6.</b> >    |
| DICHLORODI FLUOROMETHANE   | mcg             | 6.>            | 6.>            |
| 602                        |                 |                |                |
| BENZENE                    | mcq             | <.5            | <.5<br>5.5     |
| CHLOROBENZENE              | nc d            | <b>9.</b> %    | 9*>            |
| 1,2-DICHLOROBENZENE        | mcg             | <b>&lt;1</b>   | ₹              |
| 1,3-DICHLOROBENZENE        | mcg             | <.5            | <b>.</b> 5     |
| 1,4-DICHLOROBENZENE        | meg             | <b></b> 7      | <b>6.7</b>     |
| ETHYLBENZENE               | ncg             | <b>&lt;.</b> 3 | <b>6.3</b>     |
| TOLUENE                    | ncg             | <b>&lt;.3</b>  | <b>&lt;.3</b>  |

| SITE 38                  |        |                 | AVERAGE |
|--------------------------|--------|-----------------|---------|
| POT EXTR HYD             | mg/L   | 2.60            | 2.60    |
| CHEMICAL OXYGEN DEMAND   |        | 500.00          | 200.00  |
| BIOCHEMICAL OXYGEN DEMAN | mg/L   | 46.00           | 46.00   |
| TOTAL ORGANIC CARBON     | mg/L   |                 | ERR     |
| OIL & GREASE             | mg/L   | 23.70           | 23.70   |
| AMMONIA                  | mg/L   |                 | ERR     |
| NITRATE                  | mg/L   |                 | ERR     |
| NITRITE                  | 乙烷     |                 | ERR     |
| IOTAL KJELDAHL NITROGEN  | mg/L   |                 | ERR     |
| PHOSPHORUS ortho PO4     | mg/L   |                 | ERR     |
| PHOSPHORUS               | T/Su   |                 | ERR     |
| CYANIDE                  | ng/L   |                 | ERR     |
| CYANIDE free             | 17 Del |                 | ERR     |
| PHENOLS (EPA 604)        | 7/bn   |                 | ERR     |
| PHENOLS (MTH. 420)       | ng/L   | 15.00           | 15.00   |
| ARSENIC                  | ng/L   | <100            | <100    |
| BARIUM                   | ng/T   | 179.00          | 179.00  |
| CADMIUM                  | 7/bn   | <b>&lt;10</b> 0 | <100    |
|                          | 7/bn   | <b>&lt;10</b> 0 | <100    |
| CHROMIUM Hexavalent      | ng/L   |                 | ERR     |
| COPPER                   | ng/L   | <100            | <100    |
| CRON                     | ng/L   | 9484.00         | 9484.00 |
| CEAD                     | ng/L   | 39.00           | 39.00   |
| PANCANESE                | ng/L   | 124.00          | 124.00  |
| MERCURY                  | ng/L   | 2.60            | 2.60    |
| NICKEL                   | 7/bn   | <100            | <100    |
| SELENIUM                 | ng/L   | <10             | <10     |
| SILVER                   | ng/L   | <10             | <10     |
| ZINC                     | ng/L   | 171.00          | 171.00  |
| CALCIUM                  | ING/L  | 69.30           | 69.30   |
| MAGNESIUM                | mg/L   | 9.90            | 06.6    |
| POTASSIUM                | 邓元     |                 | ERR     |
| SODIUM                   | IIIQ/L |                 | ERR     |
| ICP METALS               | mg/L   |                 | ERR     |
| ALUMINUM                 | ng/L   | 267.00          | 267.00  |

| SITE 38 CONTINUED        |       |             | AVERAGE        |
|--------------------------|-------|-------------|----------------|
| ALL TITM                 | ng/L  | <100        | <100           |
|                          | ug/L  |             | ERR            |
| Dissolved                | ng/L  |             | ERR            |
| CHORIDE                  | 17 Da |             | ERR            |
| <b>30700</b>             | 8     |             | ERR            |
| FLUORIDE                 | mq/L  |             | ERR            |
| Residue Filterable (TDS) | 7/bm  |             | ERR            |
| Residue Non (SS)         | mg/L  |             | ERR            |
| Residue                  | mg/L  |             | XX             |
| Residue Volatile         | mg/L  |             | ERR            |
| Specfic Conductance      | orm   |             | ERR            |
| SULFATE                  | mg/L  |             | EKK<br>10      |
| SURFACTANTS              | 1/5m  | 2.40        | 2.40           |
| TURBIDITY                | 5     | 1           | HAR.           |
| COBALT                   | ng/T  | <100        | \$100<br>\$100 |
| MOLYBDENUM               | ng/I  | <100        | 4100<br>4100   |
| TITANIUM                 | ng/L  | <100        | \$100<br>\$100 |
| VANADIUM                 | ng/Ir | <100        | 00T>           |
| ALK TOTAL                | mg/L  |             | ERK            |
| SULFIDES                 | mg/L  |             | XXII           |
| FLOURIDE                 | mg/L  | •           | ERK            |
| 1,4-Dichlorobenzene      | ng/T  | 9.30        | 9.30           |
| trans-1,2-Dichloroethene | ng/T  | 16.00       | 16.00          |
| 1,1,1-Trichloroethane    | mg/L  | 2.10        | 01.2           |
| 601                      |       |             | •              |
| BROMODI CHLOROMETHANE    | mcg   | <b>7.</b> ' | <b>4.</b> /    |
| BROMOFORM                | mcg   | ···         | · · ·          |
| BROMOMETHANE             | Ecg.  | , , ,       | ) (r)<br>      |
| CARBON TETRACHLORIDE     |       | n •         | 9.9            |
| CHLOROETHANE             | EGG I | 6.>         | 6.>            |

| o. m. o                                           | o. ^                 | ₹                   | <b></b> 5                                  | 6.                     | <b>**</b>          | <br>*.3            | <b>&lt;.3</b>      | <.5                       | <.3                 | ۰.<br>د.                 | \<br>\<br>••              | 4.                 | \<br>\<br>\<br>\<br>\    | 9.>                 | ្ត ហ្វ <b>ុ</b>       | \<br>\<br>\<br>\<br>\ | ្ត <b>ទ</b> ុ     | 4.4                    | 6.>            |     | <.5     | 9'>           | ;<br>;<br>;         | نار<br>*            | <>                  | . ε. •<br>•      | £,3             |
|---------------------------------------------------|----------------------|---------------------|--------------------------------------------|------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|---------------------------|--------------------|--------------------------|---------------------|-----------------------|-----------------------|-------------------|------------------------|----------------|-----|---------|---------------|---------------------|---------------------|---------------------|------------------|-----------------|
| <b>σ. κ. α</b><br>• • • • •                       | 6.5                  | <1<br>              | <b></b> 5                                  | 6.                     | <b>6.4</b>         | <b>&lt;.3</b>      | <b>&lt;.3</b>      | <b>^.</b> 5               | <b>&lt;.3</b>       | <b>&lt;.5</b>            | <b>&lt;.5</b>             | <.4                | <b>&lt;.</b> 5           | <b>4.6</b>          | <.5                   | <b>&lt;.5</b>         | <.5               | <b>6.4</b>             | 6.>            |     | ·       | 9.>           | 41                  | <b>&lt;.</b> 5      | <b>7.</b> >         | <b>&lt;.3</b>    | <b>&lt;.3</b>   |
| YL ETHER INCG                                     | ы                    |                     | ENE mcg                                    | ANE                    |                    | NE mcg             |                    |                           |                     |                          | PROPEN                    |                    |                          |                     |                       |                       |                   |                        | meg            |     | mcd     | inco o        |                     |                     | ENE mcg             | inc <sub>q</sub> | mc <sub>g</sub> |
| 2—CHLOROETHYTVINYL ETHER CHLOROFORM CHLOROMETHANE | DIBROMOCHLOROMETHANE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE<br>1,4-DICHLOROBENZENE | DICHLORODFLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPANE | TRANS-1, 3-DICHLOROPROPEN | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHAN | TETRACHLOROETHYLENE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROFLUOROMEHTANE | VINYL CHLORIDE | 602 | BENZENE | CHLOROBENZENE | 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | ETHYLBENZENE     | TOLUENE         |

SITE 38 CONTINUED

| SITE 39                                                            |                          |                            | AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------|--------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POT EXTR HYD<br>CHEMICAL OXYGEN DEMAND<br>BIOCHEMICAL OXYGEN DEMAN | mg 元<br>mg 元             | 84.00<br>2000.00<br>694.00 | 84.00<br>2000.00<br>694.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TOTAL ORGANIC CARBON                                               | mg/L                     | ,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OIL & GREASE                                                       |                          | 132.00                     | 132.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NITRATE                                                            |                          |                            | ERE<br>FBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NITRITE                                                            | mg/L                     |                            | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOTAL KJELDAHL NITROGEN                                            | mg/L                     |                            | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PHOSPHORUS ortho PO4                                               | mg/L                     |                            | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PHOSPHORUS                                                         | 7/5                      |                            | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CYANIDE free                                                       |                          |                            | NAME OF THE PERSON OF THE PERS |
| PHENOLS (EPA 604)                                                  | ng/L                     |                            | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PHENOLS (MTH. 420)                                                 | ng/L                     | 105.00                     | 105.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ARSENIC                                                            | ng/L                     | <100                       | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BARIUM                                                             | ng/L                     | 629.00                     | 629.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CADMIUM                                                            | 7/bn                     | <100                       | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CHROMIUM                                                           | ng/T                     | <100                       | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Christian Hexavalent                                               | מלער<br>מ                | ( ·                        | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TECE                                                               | 7/5n                     | <100<br>1305 90            | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LEGIN                                                              | J/gn                     | 7295.00                    | 7295.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MANGANESE                                                          | מליל<br>הלילים<br>הלילים | 684.00                     | 498.00<br>684 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MERCURY                                                            | Z/bn                     | 1.00                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NICKEL                                                             | ng/L                     | 101.00                     | 101.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SELENIUM                                                           | ng/L                     | <10                        | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SILVER                                                             | ng/I                     | 26.00                      | 26.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ZINC                                                               | 7/gn                     | 1038.00                    | 1038.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CALCIUM                                                            | mg/L                     | 51.40                      | 51.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAGNESTUM                                                          | T/pm                     | 10.00                      | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FOLASSIUM                                                          | 175m                     |                            | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SOLIUM<br>ICP METALS                                               |                          |                            | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ALUMINUM                                                           | ng/L                     | 1743.00                    | 1743.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| SITE 39 CONTINUED        |        |        | AVERAGE |
|--------------------------|--------|--------|---------|
| BERYLIUM                 | 1/bn   | <100   | <100    |
| BORON                    | 7/bn   |        | ERR     |
| BORON Dissolved          | 7/bn   |        | ERR     |
| CHLORIDE                 | 7/5    |        | ERR     |
| COLOR                    | 8      |        | ERR     |
| FLUORIDE                 | IIQ/L  |        | ERR     |
| Residue Filterable (TDS) | 17/DII |        | ERR     |
| Residue Non (SS)         | IIIQ/L |        | ERR     |
| Residue                  | mg/L   |        | ERR     |
| Residue Volatile         | IIIQ/L |        | ERR     |
| Specfic Conductance      | odim   |        | ERR     |
| SULFATE                  |        |        | ERR     |
| SURFACTANTS              | mg/L   | 380.00 | 380.00  |
| TURBIDITY                | 5      |        | ERR     |
| COBALT                   | 7/bn   | <100   | <100    |
| MOLYBDENUM               | ng/L   | <100   | <100    |
| TITANIUM                 | ng/L   | <100   | <100    |
| VANADIUM                 | ng/I   | <100   | <100    |
| ALK TOTAL                | mg/L   |        |         |
| SULFIDES                 | mg/L   |        |         |
| Chloroethane             | T/bn   | 20.00  | 20.00   |
| 1,1 Dichloroethane       | mg/L   | 46.00  | 46.00   |
| Methylene chloride       | ng/L   | 7.90   | 7.90    |

| 0.80<br>328.33<br>160.00                                           | 75.00                                | 60.50   | 0.16          | 0.04    | 80.53                   | 8.53                 | 19.17      | 0.02    | ERR          | <100 | 22.00  | 79.00              | 344.33 | <100    | <100     | <b>&lt;20</b>       | 161.00 | 1688.00 | 155.67 | 101.00    | 12.50   | <100   | <b>&lt;10</b> | <10    | 786.67  | 57.97   | 10.70     | ERR       | ERR     | ERR        | 584.33   |
|--------------------------------------------------------------------|--------------------------------------|---------|---------------|---------|-------------------------|----------------------|------------|---------|--------------|------|--------|--------------------|--------|---------|----------|---------------------|--------|---------|--------|-----------|---------|--------|---------------|--------|---------|---------|-----------|-----------|---------|------------|----------|
| <.3<br>185.00<br>165.00                                            | 68.00                                | 69.00   | <b>&lt;.1</b> | 0.03    | 100.00                  | 11.00                | 21.50      | 0.02    |              | <100 | <100   | 67.00              | 219.00 | <100    | <100     | <50                 | <100   | 1107.00 | 112.00 | <100      | 4       | <100   | <10           | <10    | 584.00  | 51.00   | 9.80      |           |         |            | 353.00   |
| 1.00<br>200.00<br>172.00                                           | 72.00                                | 67.50   | <b>&lt;.1</b> | 0.03    | 82.40                   | 7.60                 | 27.50      | 0.02    |              | <100 | 22.00  | 105.00             | 229.00 | <100    | <100     | <50                 | <100   | 538.00  | 65.00  | <100      | 8.00    | <100   | <10           | <10    | 333.00  | 49.50   | 9.60      | ٠         |         |            | 216.00   |
| 0.60<br>600.00<br>143.00                                           | 85.00<br>4.60                        | 45.00   | 0.16          | 0.0     | 59.20                   | 7.00                 | 8.50       | 0.03    |              | <100 | <100   | 65.00              | 585.00 | <100    | <100     | <50                 | 161.00 | 3419.00 | 290.00 | 101.00    | 17.00   | <100   | <10           | <10    | 1443.00 | 73.40   | 12.70     |           |         | ,          | 1184.00  |
| mg/L<br>mg/L                                                       | mg/L                                 | ng/L    | 五人石           | 阿九      | mg/L                    | 四九                   |            | ING/L   | mg/L         | ng/I | 7/bn   | ng/L               | 7/bn   | 7/bn    | ng/L     | ng/T                | 7/bn   | ng/T    | 7/bn   | 7/bn      | ng/T    | 7/bn   | ng/T          | 7/bn   | 7/bn    | 110 J   | mg/L      | 阿孔        | mg/L    | T/Su       | mcg.     |
| POT EXTR HYD<br>CHEMICAL OXYGEN DEMAND<br>BIOCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON<br>OIL & GREASE | APPONIA | NITRATE       | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS ortho PO4 | PHOSPHORUS | CYANIDE | CYANIDE free |      | (EPA ( | PHENOLS (MTH. 420) | BARIUM | CADMIUM | CHROMIUM | CHROMIUM Hexavalent | COPPER | IRON    | LEAD   | MANGANESE | MERCURY | NICKEL | SELENIUM      | SILVER | ZINC    | CALCIUM | MAGNESIUM | POTASSIUM | MOLICOS | ICP METALS | ALUMINUM |

| AVERAGE           | <100     | 9133.33  | TRE TREE        | 52 67    | 0 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · |          | 79 C85                   | 78.20    | 00.1/<br>00.1/<br>00.1/ | 258 67           | 1207.33             | 41.00   | 1 07        | 16.1      | 4100 EAS | 2017       | 001       | <100<br>-    | <100 | 438.67    | 2.33     | ERR               | 8.37                | 9.63                | ERR |                          | <b>4.</b> 6. | \.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\. | y . v                                                                                       | ) Y           | ) |
|-------------------|----------|----------|-----------------|----------|----------------------------------------|----------|--------------------------|----------|-------------------------|------------------|---------------------|---------|-------------|-----------|----------|------------|-----------|--------------|------|-----------|----------|-------------------|---------------------|---------------------|-----|--------------------------|--------------|----------------------------------------|---------------------------------------------------------------------------------------------|---------------|---|
|                   | <100     | 11700.00 |                 | 60.00    |                                        |          | 420.00                   | •        |                         | 162.00           | 1284.00             | 14.00   | 1.30        |           | <100     | ×100       |           | 4100<br>1100 | <100 | 476.00    | 1.80     | •                 | 11.00               | 6.70                |     |                          |              |                                        |                                                                                             |               |   |
|                   | <100     | 8700.00  |                 | 50.00    | •                                      |          | 760.00                   |          | 758.00                  | 359.00           | 1198.00             | 22.00   | 2.20        | )<br>}    | <100     | <100       | 0017      | 7,000        | \T00 | 450.00    | 4.00     | ;                 | 7.40                | 10.20               |     |                          |              |                                        |                                                                                             |               |   |
|                   | <100     | 7000.00  |                 | 48.00    |                                        |          | 568.00                   | 74.00    | 615.00                  | 255.00           | 1140.00             | 87.00   | 2.40        |           | <100     | <100       | 2017      | 7100         | 001  | 390.00    | 1.20     | ,                 | 0.70                | 12.00               |     | •                        | * ^          | · o                                    | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 9.>           |   |
|                   | 1/bn     | ng/L     | 7/bn            | mq/L     | 8                                      | mq/L     |                          |          | mq/L                    | mq/L             | orm                 | mg/L    | mq/L        |           | 7/bn     |            |           |              |      |           |          |                   | ı√bn                | ng/L                |     | į                        | 5 C          |                                        | mcq                                                                                         | ncg           | ı |
| SITE 40 CONTINUED | BERYLIUM | BORON    | BORON Dissolved | CHLORIDE | COLOR                                  | FLUORIDE | Residue Filterable (TDS) | Non (SS) | Residue                 | Residue Volatile | Specfic Conductance | SULFATE | SURFACTANTS | TURBIDITY | COBALT   | MOLYBDENUM | TITANITIM | VANADITIM    |      | ALK IQEAL | SOLFTDES | 1 A_Diohlorohomen | 1 4 Pichlobelizelle | 1,4-Dichloropenzene | 601 | BROWDD I CHI OBOMETHANIE | BROMOFORM    | BROMOMETHANE                           | CARBON TETRACHLORIDE                                                                        | CHLOROBENZENE |   |

| AVERAGE           | 6.>          | 6.>                      | <b>6.3</b>  | <b>6</b>      | 6.                    | ; ₩                 | ; <b>&gt;</b>       | <.7<br><.7          | 6.>                    | 4.4                | · · · ·            | · · · · · · · · · · · · · · · · · · · | ,<br>,<br>,<br>,          | ,                   | ,<br>,<br>,              | ,<br>(1)                  | 4.>                | , r.                     | 9. >                | , , ,                 | · • • • • • • • • • • • • • • • • • • • | ,<br>,            | 4. >                   | 6.>            |     | <b>'</b>   |               | ٥. ٠                                            | ,<br>,              | ·,                  | ; ~          | ÷;         |
|-------------------|--------------|--------------------------|-------------|---------------|-----------------------|---------------------|---------------------|---------------------|------------------------|--------------------|--------------------|---------------------------------------|---------------------------|---------------------|--------------------------|---------------------------|--------------------|--------------------------|---------------------|-----------------------|-----------------------------------------|-------------------|------------------------|----------------|-----|------------|---------------|-------------------------------------------------|---------------------|---------------------|--------------|------------|
|                   |              |                          |             |               |                       |                     |                     |                     |                        |                    |                    |                                       |                           |                     |                          |                           |                    |                          |                     |                       |                                         |                   |                        |                |     |            |               |                                                 |                     |                     |              |            |
|                   |              |                          |             |               |                       |                     |                     |                     |                        |                    |                    |                                       |                           |                     |                          |                           |                    |                          |                     |                       |                                         |                   |                        |                |     |            |               |                                                 |                     |                     |              |            |
|                   | 6.>          | 6.>                      | <b>6.3</b>  | 8.            | 6.>                   | 7                   | <b>.</b> .5         | <b>7.</b> 2         | 6.>                    | 4.4                | <b>6.3</b>         | <b>6.3</b>                            | <b>.</b> 5                | <b>6.3</b>          | <b>.</b> .5              | <b>.</b> .5               | <b>4.</b>          |                          | 9.>                 | <b>.</b> 5            | <b>.</b> .5                             | <b>.</b> .5       | <b>4.4</b>             | <b>6.</b> >    |     | <b>6.5</b> | 9             | ;                                               | · ·                 | <br>                | . Y          | <b>6.3</b> |
|                   | acg.         | <b>B</b> Cg              | <b>B</b> Cg | BCG           | ECG.                  | acg.                | mcg                 | meg                 | mcg                    | mcg.               | mcg.               | mcg.                                  | ncg.                      | mcg.                | mcg.                     | mcg.                      | mcg.               | mcd.                     | mc d                | mcg                   | mcg                                     | mcg               | mcg                    | mcg            |     | ECG.       |               | ֓֞֞֜֜֞֜֜֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֡֓֓֓֓֡֓֓֡֓֡֓֡֓֡ |                     |                     | E C C        | ncg.       |
| SITE 40 CONTINUED | CHLOROETHANE | 2-CHLOROETHYIVINYL ETHER | CHLORUFORM  | CHLOROMETHANE | DIBROMOCHLOROMETHIANE | 1,2-dichlorobenzene | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | DICHLORODFLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE                    | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPANE | TRANS-1, 3-DICHLOROPROPEN | METHYLENE CHLORIDE | 1,1,2,2-TETRACHLOROETHAN | TETRACHLOROETHYLENE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE                   | TRICHLOROETHYLENE | TRICHLOROFLUOROMEHTANE | VINYL CHLORIDE | 602 | BENZENE    | CHLOROBENZENE | 1.2-DICHLOROBENZENE                             | 1.3-DICHIOROBENZENE | 1,4-DICHLOROBENZENE | ETHYLBENZENE | TOLUENE    |

| _ |
|---|
| 4 |
|   |
| μ |
| H |
| н |
| 7 |

| 2.52<br>240.00<br>37.40<br>13.25<br>13.25<br>0.02<br>32.48<br>32.48<br>16.90<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.25                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 2.80<br>225.00<br>225.00<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| 300.00<br>300.00<br>300.00<br>27.00<br>19.20<br>23.00<br>0.02<br>33.60<br>10.00<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| 1.90<br>225.00<br>225.00<br>44.00<br>12.00<br>27.50<br>30.80<br>6.00<br>18.50<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.00<br>392.00                      |
| 0.60<br>165.00<br>165.00<br>26.90<br>21.00<br>0.10<br>0.01<br>0.01<br>0.01<br>1.50<br>1.50<br>1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.00<br>500.00                      |
| 275.00<br>275.00<br>39.00<br>9.00<br>20.00<br>0.12<br>0.12<br>0.01<br>5.80<br>16.50<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.00                                |
| 250.00<br>35.00<br>35.00<br>8.40<br>26.00<br>0.10<br>0.10<br>17.50<br>17.50<br>113.00<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31.00<br>468.00                      |
| TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L<br>s) mg/L                      |
| POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON OIL & GREASE AMMONIA NITRATE NITRATE NITRATE NITRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS CYANIDE CYANIDM CALDHUM CALDHUM CALDHUM CALDHUM CALDHUM CALDHUM CALCHUM MANGANESE MERCURY NICKEL SILVER ZINC CALCHUM MAGNESIUM ALLMINUM BERYLIUM BERY | CHLORIDE<br>Residue Filterable (TDS) |

| TINCED |
|--------|
| 8      |
| 五 41   |
| SIT    |

|             | 746.25               | 49.75   | 4.80        | <100   | <100       | <100     | <100     | 259.25    | 0.97     | <b>4.</b> 4        | 6.>          | 4.27       | <b>6.8</b>    | **                   | 1.92                | 6.34  | <.5                           | 1.15               | 9.>                        | ***                      | 14.00                | 3.10                  | 380.00                   | 5.5         | 28.00               | 1.00           | 6.58          | £,3        | 7                   | 8.00                |   |
|-------------|----------------------|---------|-------------|--------|------------|----------|----------|-----------|----------|--------------------|--------------|------------|---------------|----------------------|---------------------|-------|-------------------------------|--------------------|----------------------------|--------------------------|----------------------|-----------------------|--------------------------|-------------|---------------------|----------------|---------------|------------|---------------------|---------------------|---|
|             |                      |         |             |        |            | <100     |          |           | 0.80     |                    | 6.>          |            |               | 8.>                  | 1.70                | 8.00  |                               |                    |                            |                          |                      |                       |                          |             |                     |                | <b>&lt;.3</b> |            |                     |                     |   |
| (<br>)<br>L | 759.00               | 39.00   | 4.20        | <100   | <100       | <100     | <100     | 279.00    | 1.00     | <b>4.</b>          | <b>6.</b> >  |            | <b>8.</b>     | #>                   | 3.70                | 14.00 | <b>&lt;.</b> 5                | <b>4.</b> 4        | <b>9.</b> ×                |                          |                      |                       |                          |             |                     |                | 7.20          |            |                     |                     |   |
| ,<br>,      | 00.0//               | 79.00   | 5.40        |        |            |          |          | 274.00    |          | <b>4.4</b>         |              |            | <b>8.</b>     |                      | 1.60                | 2.40  | <b>&lt;.</b> 5                | <b>4.4</b>         | <b>9.</b> ×                |                          |                      |                       |                          |             |                     |                | 13.00         |            |                     |                     |   |
| ,<br>,<br>, | 740.00               | 00.00   | 4.40        | <100   | <100       | <100     | <100     | 245.00    | 2.00     | <b>4.</b> 4        | <b>6.</b>    | 3.10       | 8.            |                      | 1.70                | 1.70  | <b>&lt;.</b> 5                | 0.00               | <b>9.</b> %                |                          | 14.00                |                       |                          |             | <b>.</b> .5         | <b>9. &gt;</b> | 2.40          |            |                     |                     |   |
| i           | /16.00               | 91.00   | 5.20        | <100   | <100       | <100     | <100     | 239.00    | 90.0     | <b>4.</b> 4        | 6.>          | 2.20       | 8.            | #> #>                | 0.90                | 5.60  | <b>&lt;.</b> 5                | 1.40               | <b>9.</b> ×                | **                       | 14.00                | 3.10                  | 380.00                   | <b>4.</b> 5 | 58.00               | 1.00           | 3.70          | <b>6.3</b> | 7                   | 8.00                |   |
| 4           | ouen<br>J            | 7/5     | 17/2m       | ng/L   | ng/L       | nd/F     | ng/L     | ng/L      | Ing/L    | ng/L               | mcg          | ng/L       | ng/L          |                      | ng/L                |       | ne ug/L                       | ng/L               | meg                        | mq/L                     | nd/L                 | 1/bn                  |                          | ng/L        | 1/bn                | mq/L           | ng/L          | ng/F       | nd/L                | ng/L                | I |
|             | Specific Conductance | SOLFAIT | SURFACTANTS | COBALT | MOLYBDENUM | TITANIUM | VANADIUM | ALK TOTAL | SULFIDES | 1,1-DICHLOROETHANE | Chloroethane | Chloroform | Chloromethane | Chlorodibromomethane | 1,4-Dichlorobenzene |       | trans-1,2-Dichloroethene ug/L | Methylene chloride | <b>Tetrachloroethylene</b> | 4-CHLOROPHENYL-PHENYLETH | DI-n-BUTYL PHTHALATE | BENZYL-BUTYLPHTHALATE | BIS(2-ETHYLHEXYL)PHTHALA | Benzene     | 1,3-Dichlorobenzene | Cholorobenzene | Ethyl benzene | Toluene    | 1,2-DICHLOROBENZENE | 1,4-DICHLOROBENZENE |   |

| 2 | ٧  |
|---|----|
| ſ | .1 |
| Ė | 7  |
| é | ×  |

| 3.35<br>846.67<br>202.67                                           | 75.75                | 8.50    | 0.21    | 0.02    | 21.30                   | 6.38                 | 14.88      | 0.01    | ERR          | 4.97              | 40.75              | <100    | 120.00 | <100    | <100     | <100                | <100   | 419.50 | <20  | <100      | 4.55    | <100   | 22.00  | <50            | 44.85   | 6.75      | ERR       | ERR    | 153.33   | <100<br>450.00    |
|--------------------------------------------------------------------|----------------------|---------|---------|---------|-------------------------|----------------------|------------|---------|--------------|-------------------|--------------------|---------|--------|---------|----------|---------------------|--------|--------|------|-----------|---------|--------|--------|----------------|---------|-----------|-----------|--------|----------|-------------------|
|                                                                    |                      |         |         |         |                         |                      |            |         |              |                   |                    |         |        |         |          | <100                |        |        |      |           |         |        |        |                |         |           |           |        |          |                   |
|                                                                    | 59.00                | 13 50   | 0.10    | <.02    | 24.00                   | 6.20                 | 44.00      | <.01    |              |                   | 55.00              | <100    | <100   | <100    | <100     | -                   | <100   | 219.00 | <20  | <100      | ₽       | <100   | <10    | <50            | 40.80   | 6.50      |           |        | <100     | <100<br>350.00    |
| <.3<br>1110.00<br>208.00                                           | 38.00                | 2.90    | 0.52    | <.02    | 21.20                   | 1.50                 | 2.50       | <.01    |              | 4.10              | 23.00              | <100    | <100   | <100    | <100     | <100                | <100   | 359.00 | <20  | <100      | 4       | <100   | 11.00  | <50            | 55.40   | 8.40      |           |        | 132.00   | <100<br>650.00    |
| 3.50<br>1130.00<br>331.00                                          | 121.00               | 13.00   | 0.10    | <.02    | 21.20                   | 3.80                 | 6.50       | 0.01    |              | 7.80              | 37.00              | <100    | <100   | <100    | <100     | <100                | <100   | 815.00 | <20  | <100      | 7.50    | <100   | 33.00  | <b>&lt;</b> 20 | 44.50   | 6.50      |           |        | 198.00   | <100<br>450.00    |
| 3.20<br>300.00<br>69.00                                            | 85.00                | 2.00    | 0.12    | 0.02    | 18.80                   | 14.00                | 6.50       | 0.01    |              | 3.00              | 48.00              | <100    | 120.00 | <100    | <100     | <100                | <100   | 285.00 | <20  | <100      | 1.60    | <100   | 22.00  | <b>&lt;</b> 20 | 38.70   | 5.60      |           |        | 130.00   | <100<br>350.00    |
| mg元<br>mg元                                                         | J. P.                |         | mg/L    | mg/L    | mg/L                    | mg/L                 | mg/L       | mg/L    | mg/L         | ng/L              | ng/L               | ng/L    | ng/L   | ng/L    | ng/L     | ng/L                | ng/L   | ng/L   | mg/L | ng/L      | ng/L    | ng/L   | ng/L   | ng/L           | mg/L    | mg/L      | ng/L      | IIIQ/L | ng/L     | ng/L<br>ng/L      |
| POT EXTR HYD<br>CHEMICAL OXYGEN DEMAND<br>BIOCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON | AMMONIA | NITRATE | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS ortho PO4 | PHOSPHORUS | CYANIDE | CYANIDE free | PHENOLS (EPA 604) | PHENOLS (MTH. 620) | ARSENIC | BARIUM | CADMIUM | CHROMIUM | CHROMIUM Hexavalent | COPPER | IRON   | LEAD | MANGANESE | MERCURY | NICKEL | SILVER | ZINC           | CALCIUM | MAGNESIUM | POTASSIUM | SODIUM | ALUMINUM | BERYLIUM<br>BORON |

| 百  |
|----|
| 5  |
| É  |
| Z  |
| 8  |
| 42 |
|    |
| 믬  |
| SI |

| 33.25                                                  | 505.33<br>116.50<br>689.50<br>23.75<br>5.90<br><100<br><100<br><100<br>265.00<br>1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.95         |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 64.00<br>558.00                                        | 159.00<br>846.00<br>9.00<br>22.00<br><100<br><100<br>309.00<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| 22.00<br>328.00                                        | 563.00<br>108.00<br>637.00<br>55.00<br>(100<br>(100<br>(100<br>212.00<br>1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 26.00<br>290.00                                        | 418.00<br>119.00<br>627.00<br>9.00<br>0.50<br>(100<br>(100<br>255.00<br>2.40<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20         |
| 21.00                                                  | 535.00<br>80.00<br>648.00<br>22.00<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70         |
| mg/L<br>Som (Some                                      | Property Pro | ng/r         |
| CHLORIDE<br>Residue Filterable (TI<br>Residue Non (SS) | Residue Residue Volatile Specfic Conductance SULFATE SURFACTANTS MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES Chloroform Wethylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ruyi penzene |

| ~ |
|---|
| 4 |
| į |

|     | POT EXTR HYD             | Ing/L    | 5.70           | 9.80           | 2.60          | 6.03        |
|-----|--------------------------|----------|----------------|----------------|---------------|-------------|
|     | CHEMICAL OXYGEN DEMAND   | 7/5      | 0.25           | 200.00         | 390.00        | 96.75       |
|     | BIOCHEMICAL OXYGEN DEMAN | _        | 118.50         | 147.50         | 188.00        | 51.33       |
|     | TOTAL ORGANIC CARBON     | 175m     | 59.00          | 48.00          | 60.00         | 55.67       |
|     | OIL & GREASE             |          | 45.20          | 44.80          | 17.80         | 35.93       |
|     | APPONIA                  |          | 13.50          | 20.00          | 13.50         | 15.67       |
|     | NITRAILE                 | mg/L     | 0.10           | <b>&lt;.1</b>  | <b>&lt;.1</b> | 0.10        |
|     | NITRITE                  |          | 0.02           | <.02           | <.02          | 0.02        |
|     | TOTAL KJELDAHL NITROGEN  | III J    | 24.00          | 30.40          | 22.80         | 25.73       |
|     | PHOSPHORUS ortho PO4     | EG/L     | 6.20           | 8.60           | 6.25          | 7.02        |
|     | PHOSPHORUS               | mg/L     | 44.00          | 18.50          | 13.50         | 25.33       |
|     | CYANIDE                  | mg/L     | 0.01           | 0.01           | 0.01          | 0.01        |
|     | PHENOLS (EPA 604)        | 7/bn     | 15.00          | 12.00          | 34.00         | 20.33       |
|     | PHENOLS (MTH. 620)       | ng/L     | 25.00          | 34.00          | 55.00         | 38.00       |
|     | ARSENIC                  | 7/bn     | <100           | <100           | <100          | <100        |
|     | BARIUM                   | ng/L     | <100           | <100           | <100          | <100        |
| 20  | CADMIUM                  | ng/T     | <100           | <100           | <100          | <100        |
| , E | CHROMIUM                 | ng/L     | <100           | <100           | <100          | <100        |
|     | CHROMIUM Hexavalent      | ng/L     | <100           | <100           | <100          | <100        |
|     | COPPER                   | ng/L     | <100           | <100           | <100          | <100        |
|     | IRON                     | 7/bn     | 217.00         | 219.00         | 295.00        | 43.67       |
|     | LEAD                     | 7/bn     | <20            | <20            | <b>&lt;20</b> | <b>4</b> 50 |
|     | MANGANESE                | 7\fin    | <100           | <100           | <100          | <100        |
|     | MERCURY                  | 7/bn     | ₽              | ₽              | 7             | ₽           |
|     | NICKEL                   | ng/L     | <100           | <100           | <100          | <100        |
|     | SILVER                   | ng/L     | <10            | <10            | <10           | <b>410</b>  |
|     | ZINC                     | ng/I     | <b>&lt;</b> 20 | <b>&lt;</b> 20 | <50           | <b>~20</b>  |
|     | CALCIUM                  | 邓元       | 40.70          | 40.80          | 39.40         | 40.30       |
|     | MAGNESIUM                | T/bu     | 6.40           | 6.50           | 6.40          | 6.43        |
|     | ALUMINUM                 | 7<br>Jan | 127.00         | 132.00         | 210.00        | 56.33       |
|     | BERYLIUM                 | ng/L     | <100           | <100           | <100          | <100        |

| <u> </u> |
|----------|
| ONTIN    |
| <u>უ</u> |
| ITE 4    |

| SITE 43 CONTINUED        |       |             |        |        |             |      | AVERAGE      |
|--------------------------|-------|-------------|--------|--------|-------------|------|--------------|
|                          | ng/L  | 400.00      | 600.00 | 350.00 |             |      | 450          |
|                          | mq/L  | 64.00       | 34.00  | 32.00  |             |      |              |
| Residue Filterable (TDS) |       | 558.00      | 265.00 | 504.00 |             |      |              |
| Residue Non (SS)         | ING/L | 96.00       |        |        |             |      | .7tr         |
|                          | 7/5   | 563.00      | 448.00 |        |             |      |              |
| Residue Volatile         | Ind/L | 159.00      | 121.00 | 285.00 |             |      | 188          |
| Specfic Conductance      | ode   | 846.00      | 714.00 | 784.00 |             |      | 100.         |
|                          | M/L   | 00.6        | 9.00   | 81.00  |             |      | .10/         |
| SURFACTANTS              | ng/L  | 22.00       | 13.50  | 14.00  |             |      | 33.00        |
|                          | ng/L  | <100        |        | <100   |             |      | .01          |
| MOLYBDENUM               | ng/L  | <100        |        | <100   |             |      | ot,          |
|                          | ng/L  | <100        |        | <100   |             |      | or,          |
|                          | ng/T  | <100        |        | <100   |             |      | ot,          |
|                          |       | 309,00      | 279.00 | 292.00 |             |      | 0T>          |
|                          | III T | 2.00        |        | 1.00   |             |      | . 293.       |
|                          | ng/L  | )<br>)<br>) |        |        |             |      | .7           |
| 1,1-DICHLOROETHANE       | ng/L  | 0.80        |        |        |             |      | ن<br>ا       |
| Je<br>Je                 | 7/bn  |             |        |        |             |      | ָבָּי<br>פלי |
|                          | ng/L  |             |        |        |             |      |              |
|                          | ng/L  |             |        |        |             |      | i i          |
| methane                  | mq/L  |             |        |        |             |      | <b>1</b>     |
|                          | 7/5n  | 3.10        | 2.10   | 3.50   | 1.80        | 3.40 |              |
| trans-1,2-Dichloroethene | nd/L  |             |        |        | )<br>)<br>! | ?    | , 6          |
| Methylene chloride       | T/bn  | 0.40        |        |        |             |      | 21 0         |
| Tetrachloroethylene      | T/bu  |             |        |        |             |      |              |
|                          | ng/L  |             |        |        |             |      | 4 f          |
|                          | ng/L  | 0.50        |        |        |             |      | 립            |
| enzene                   | ng/L  |             |        |        |             |      | • E          |
| Ethyl benzene            | 7/bn  | 2.30        | 09.0   | 4.10   |             |      | 2.33         |
| 1.2-DICHIOBORNZENE       | 7/5n  | C           |        |        |             |      | Ħ            |
|                          | 3     | 7.30        |        |        |             |      | 2.           |

| 4 |
|---|
| 4 |
| 巴 |
| H |

| POT EXTR HYD                  | mg/L  | 1.90   | 1.00     | 0.30          | 1.07    |
|-------------------------------|-------|--------|----------|---------------|---------|
| CHEMICAL OXYGEN DEMAND        | 176E  | 350.00 | 260.00   | 270.00        | 293,33  |
| BIOCHEMICAL OXYGEN DEMAN UG/L | Z/gn  | 142.00 | 148.00   | 188.00        | 159.33  |
| TOTAL ORGANIC CARBON          | mg/L  | 48.00  | 53.00    | 65.00         | 55,33   |
| OIL & GREASE                  |       | 8.40   | 6.20     | 10.60         | 8.40    |
| AMMONIA                       | Ing/L | 19.00  | 26.00    | 31.50         | 25.50   |
| NITRATE                       | mg/L  | 0.16   | 0.10     | <b>&lt;.1</b> | 0.13    |
| NITRITE                       | Ing/L | <.02   | <.02     | .02           | 0.02    |
| TOTAL KJELDAHL NITROGEN       | Ing/L | 34.40  | 38.00    | 44.00         | 38.80   |
| PHOSPHORUS ortho PO4          | Ing/L | 5.80   | 8.60     | 8.50          | 7.63    |
| PHOSPHORUS                    | Ing/L | 25.00  | 18.50    | 14.00         | 19.17   |
| CYANIDE                       | Ing/L | 0.01   | 0.01     | 0.01          | 0.01    |
| CYANIDE free                  | mg/L  |        |          |               | ERR     |
| PHENOLS (EPA 604)             | ng/L  | 19.00  | 4.70     | <10           | 11.85   |
| PHENOLS (MTH. 420)            | ng/T  | 41.00  | 40.00    | 20.00         | 33.67   |
| ARSENIC                       | ng/L  | <100   | <100     | <100          | <100    |
| BARIUM                        | T/bn  | 396.00 | <100     | <100          | 396.00  |
| CADMIUM                       | ng/T  | <100   | <100     | <100          | <100    |
| CHROMIUM                      | T/bn  | <100   | <100     | <100          | <100    |
| CHROMIUM Hexavalent           | ng/T  | <100   | <100     | <100          | <100    |
| COPPER                        | T/bn  | <100   | <100     | <100          | <100    |
| IRON                          | T/bn  | 201.00 | 24820.00 | 312.00        | 8444.33 |
| LEAD                          | T/bn  | 118.00 | <20      | <b>&lt;20</b> | 118.00  |
| MANGANESE                     | 1/bn  | 117.00 | <100     | <100          | 117.00  |
| MERCURY                       | ng/L  | 1.60   | ₽        | 7             | 1.60    |
| NICKEL                        | ng/L  | <100   | <100     | <100          | <100    |
| SILVER                        | ng/L  | <10    | <10      | <10           | <10     |
| ZINC                          | T/bn  | 829.00 | <50      | <50           | 829.00  |
| CALCIUM                       | mg/L  | 41.70  | 111.50   | 39.30         | 64.17   |
| MAGNESIUM                     | mg/L  | 6.90   | 9.90     | 6.40          | 7.73    |
| ALUMINUM                      | 7/bn  | 139.00 | 2037.00  | 156.00        | 777,33  |
| BERYLIUM                      | ng/L  | <100   | <100     | <100          | <100    |
| BORON                         | ng/L  | 700.00 | 400.00   | 400.00        | 200.00  |

| Ð   |
|-----|
| 닏   |
| z   |
| E   |
| Z   |
| ğ   |
| V   |
| 4   |
| 4   |
|     |
| 빈   |
| 5   |
| เง่ |

|                   |          | 400.00                        |                  |         | 11.00               | 00.            | o c         |        |            |          |          |           |          |                    |              |            |                    | c                   | >                        |                    |                     |                               |                                            |                     |                     |
|-------------------|----------|-------------------------------|------------------|---------|---------------------|----------------|-------------|--------|------------|----------|----------|-----------|----------|--------------------|--------------|------------|--------------------|---------------------|--------------------------|--------------------|---------------------|-------------------------------|--------------------------------------------|---------------------|---------------------|
|                   |          |                               |                  | ı       | 11.0                | ٠ د            |             | >      |            |          |          | 0         | •        | ı                  |              |            |                    |                     | 06.3                     |                    |                     |                               |                                            |                     |                     |
|                   | 2.00     |                               |                  |         |                     |                | 00.7/       |        |            |          |          |           |          |                    |              |            |                    | 78 6                |                          |                    |                     |                               |                                            |                     |                     |
|                   |          | 270.00                        |                  |         |                     | 753.00         |             |        |            |          |          |           |          |                    |              |            |                    | 00                  |                          |                    |                     |                               |                                            |                     |                     |
|                   | 26.00    | 84.00                         | 45.00            | 476.00  | 157.00              | 53.00          | 5.10        | <100   | <100       | <100     | <100     | 309.00    | 2.00     | 0.80               |              |            |                    | 2,00                | •                        |                    |                     |                               |                                            |                     |                     |
|                   | mg/L     | (TDS) mg/L                    | mg/L             | mg/L    | 1/2m                | umino<br>Va 7. | uq.7.       | ug/L   | ug/L       | T/bn     | ng/L     | ng/L      | mg/L     | ng/L               | ng/L         | J/gn       | J/gn               |                     |                          |                    | ng/L                | DEMAN mg/L                    | III J. | 1/bn                | nd/I                |
| SITE 44 CONTINUED | CHLORIDE | Residue Filterable (TDS) mg/L | Residue Non (SS) | Residue | Specfic Conductance | SULFATE        | SURFACTANTS | CORALT | MOLYBDENUM | TITANIUM | VANADIUM | ALK TOTAL | SULFIDES | 1,1-DICHLOROETHANE | Chloroethane | Chlorotorm | Chlorodibromothane | 1,4-Dichlorobenzene | trans-1,2-Dichloroethene | Methylene chloride | Tetrachloroethylene | BIOCHEMICAL OXYGEN DEMAN mg/L | Benzene                                    | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene |

| POT EXTR HYD             | 1/bu  | 2.20        | 1.90          | 8.60          |               |       |    | 4.23          |
|--------------------------|-------|-------------|---------------|---------------|---------------|-------|----|---------------|
| CHEMICAL OXYGEN DEMAND   | 17/2m | 325.00      | 950.00        | 495.00        |               |       | 55 | 90.00         |
| BIOCHEMICAL OXYGEN DEMAN |       | 162.80      | 147.00        | 145.00        |               |       | 15 | 51.60         |
| TOTAL ORGANIC CARBON     | T/bu  | 75.00       | 61.00         | 26.00         |               |       | •  | 54.00         |
| OIL & GREASE             |       | 22.70       | 10.10         | 103.20        | 61.00         | 26.00 | 3, | 50.60         |
| APPICNIA                 | Ind/L | 30.50       | 24.50         | 19.00         |               |       |    | 24.67         |
| NITRAITE                 | T/Sm  | 0.02        | 0.12          | <b>&lt;.1</b> | <b>&lt;.1</b> |       |    | 0.07          |
| NITRITE                  | T/pm  | 0.03        | <.02          | <.02          |               |       |    | 0.03          |
| TOTAL KJELDAHL NITROGEN  | mg/L  | 41.60       | 37.60         | 26.80         |               |       | ,  | 35.33         |
| PHOSPHORUS ortho PO4     | mq/L  | 13.75       | 10.80         | 8.60          |               |       | •  | 11.05         |
| PHOSPHORUS               | Ind/L | 18.50       | 21.50         | 30.00         |               |       |    | 23.33         |
| CYANIDE                  |       | 0.01        | 0.01          | 0.01          |               |       |    | 0.01          |
| CYANIDE free             | mq/L  |             |               |               |               |       |    | ERR           |
| PHENOLS (EPA 604)        | 7/bn  | 16.00       | 8.90          | <10           |               |       | 2( | 04.28         |
| PHENOLS (MTH. 420)       | 7/bn  | 68.00       | 40.00         | 25.00         |               |       | 7  | 44.33         |
| ARSENIC                  | 7/bn  | <100        | <100          | <100          |               |       | •  | <100          |
| BARIUM                   | ng/L  | <100        | <100          | <100          |               |       | •  | <100          |
| CADMIUM                  | ng/L  | <100        | <100          | <100          |               |       | •  | <100          |
| CHROMIUM                 | ng/L  | <100        | <100          | <100          |               |       | •  | <100          |
| CHROMIUM Hexavalent      | 7/bn  | <100        | <100          | <100          |               |       | •  | <100          |
| COPPER                   | ng/L  | <100        | <100          | <100          |               |       | •  | <100          |
| IRON                     | ng/L  | 672.00      | 800.00        | 547.00        |               |       | .9 | 73.00         |
| LEAD                     | ng/L  | <b>4</b> 50 | <b>&lt;20</b> | <20           |               |       |    | <b>4</b> 70   |
| MANCANESE                | ng/L  | <100        | <100          | <100          |               |       | •  | <100          |
| MERCURY                  | ng/L  | 2.20        | 1.20          | <b>1</b>      |               |       |    | 1.70          |
| NICKEL                   | ng/L  | <100        | <100          | <100          |               |       | •  | <100          |
| SILVER                   | ng/I  | <10         | <10           | <10           |               |       |    | <b>&lt;10</b> |
| ZINC                     | 7/bn  | 113.00      | 137.00        | <50           |               |       | 11 | 25.00         |
| CALCIUM                  | T/bu  | 48.60       | 48.80         | 44.60         |               |       | •  | 47.33         |
| MAGNESIUM                | 邓元    | 8.30        | 8.00          | 8.40          |               |       |    | 8.23          |
| ALUMINUM                 | ng/L  | 227.00      | 250.00        | 128.00        |               |       | 7( | 01.67         |
| BERYLIUM                 | ng/L  | <100        | <100 ·        | <100          |               |       | •  | <100          |
| BORON                    | ng/L  | 1050.00     | 00.009        | 1250.00       |               |       | 36 | 29.996        |

| CONTINUED |
|-----------|
| 45        |
| SITE      |

| BORON Dissolved          | 7/bn  |        |        |        |      | ERR    |
|--------------------------|-------|--------|--------|--------|------|--------|
| CHLORIDE                 | mq/L  | 36.00  | 30.00  | 30.00  |      | 32.00  |
| Residue Filterable (TDS) |       | 500.00 | 290.00 | 476.00 |      | 422.00 |
| Residue Non (SS)         | mq/L  | 56.00  |        |        |      | 56.00  |
| Residue                  | Ing/L | 427.00 | 498.00 |        |      | 462.50 |
| Residue Volatile         | Ind/L | 180.00 | 89.00  | 162.00 |      | 143.67 |
| Specfic Conductance      | orum  | 965.00 | 846.00 | 833.00 |      | 881.33 |
| SULFATE                  | mg/L  | 79.00  | 15.00  | 37.00  |      | 43.67  |
| SURFACTANTS              | mq/L  | 0.40   | 11.00  | 8.00   |      | 6.47   |
| COBALT                   | ng/L  | <100   | <100   | <100   |      | <100   |
| MOLYBDENUM               | ng/L  | <100   | <100   | <100   |      | <100   |
| TITANIOM                 | nd/L  | <100   | <100   | <100   |      | <100   |
| VANADIUM                 | ng/L  | <100   | <100   | <100   |      | <100   |
| ALK TOTAL                | 7/bn  | 370.00 | 328.00 | 323.00 |      | 340.33 |
| SULFIDES                 | T/pm  | 2.60   | 4.60   | 0.80   |      | 2.67   |
| 601                      |       |        |        |        |      |        |
| 1,4-Dichlorobenzene      | 7/bn  | 2.10   | 3.00   | 2.40   | 4.50 | 3.00   |
| Methylene chloride       | ng/L  | 09.0   | 1.10   |        |      | 0.85   |
| Ethyl benzene            | 7/bn  | 2.20   | 2.50   |        |      | 2.35   |

| SITE 46                      |             |         | AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POT EXTR HYD                 | T/bu        | 56.80   | 56.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CHEMICAL OXYGEN DEMAND       | _           | 220.00  | 220.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BIOCHEMICAL OXYGEN DEMAN     |             | 29.00   | 29.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TOTAL ORGANIC CARBON         | mg/L        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OIL & GREASE                 | IIG/L       | 103.20  | 103.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AMONIA                       | mg/L        |         | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NITRATE                      | mg/L        |         | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MINIE THE PART OF THE PARTY. | III<br>L    |         | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOTAL MELLANIL NITROGEN      |             |         | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PROSPECTOR OF THE FUG        |             |         | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CVANTOR                      | 1 to 1      |         | NATE OF THE PROPERTY OF THE PR |
| CYANIDE free                 |             |         | ERK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | מפער        |         | NVIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _                            | T/bn        | 70.00   | 70.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ARSENIC                      | T/bn        | <100    | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BARIUM                       | ng/L        | <100    | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CADMITUM                     | ng/L        | <100    | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CHROMIUM                     | 7/bn        | <100    | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| COPPER                       | 7/bn        | <100    | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IRON                         | 7/bn        | 1201.00 | 1201.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LEAD                         | 7/bn        | 76.00   | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MANGANESE                    | T/bn        | <100    | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MERCURY                      | T/bn        | ₽       | <b>\_1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NICKEL                       | T/bn        | <100    | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SILVER                       | T/bn        | <10     | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ZINC                         | T/bn        | <50     | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CALCTUM                      | mg/L        | 48.40   | 48.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAGNESIUM                    | mg/L        | 7.80    | 7.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| POTASSIUM                    | ng/L        |         | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SODIUM                       | mg/L        |         | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ICP METALS                   | mg/L        |         | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ALLMINUM                     | 7/bn        | 203.00  | 203.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BERYLIUM                     | ng/L        | <100    | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DOMEN                        | 1<br>7<br>1 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| BORON Dissolved CHLORIDE COUGR COUGR COUGR COUGR COUGR COUGR Residue Filterable (TDS) mg/L Residue Non: (SS) mg/L Residue Volatile mg/L Specfic Conductance umbo SULFATE SURFACTANTS mg/L COBALT COBALT COBALT UG/L COBALT UG/                                                                                                                                                                                                                                                                                                                                                                                                                        | SITE 46 CONTINUED     |       |         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|---------|--|
| TDS) mg L<br>TDS) mg L<br>TDS | ON Dissolved          | ng/L  |         |  |
| CO BOLL STORY STOR                                                                                                                                                                                                                                                                                                                                                                                                                        | DRIDE                 | mg/L  |         |  |
| TDS) mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>thene ug/L<br>ug/L<br>thene ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | æ                     | 8     |         |  |
| TDS) mg/L mg/L mg/L mg/L mg/L mg/L thene ug/L ug/L ne ug/L ug/L ne ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ORIDE                 |       |         |  |
| thene ug true                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | mg/L  |         |  |
| Then and then and the angle angle and the angle and the angle and the angle angle and the angle angle and the angle angle and the angle angle angle angle an                                                                                                                                                                                                                                                                                                                                                                                                                        | idue Non. (SS)        | mg/L  |         |  |
| thene ug the ug thene ug the ug thene ug the                                                                                                                                                                                                                                                                                                                                                                                                                        | idue                  | mg/L  |         |  |
| umho<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | idue Volatile         | mg/L  |         |  |
| Then and the control of the control                                                                                                                                                                                                                                                                                                                                                                                                                         | cfic Conductance      | orm   |         |  |
| thene ug trug trug trug trug trug trug trug t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FATE                  | mq/L  |         |  |
| TO UGA C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FACTANTS              | mq/L  | 0.10    |  |
| ught ught thene ught ught ught ught ught ught ught ught                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BIDITY                | ď,    |         |  |
| ugh<br>ugh<br>ugh<br>ugh<br>ugh<br>thene ugh<br>ugh<br>ugh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALT                   | ng/L  | <100    |  |
| ught<br>ught<br>ught<br>ught<br>ught<br>ne<br>ught<br>ught<br>ught                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YBDENUM               | ng/L  | <100    |  |
| ught<br>ught<br>ught<br>ught<br>thene ught<br>ught<br>ught<br>ught                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANIUM                 | ng/L  | <100    |  |
| ugli<br>mgli<br>ugli<br>thene ugli<br>ugli<br>ne ugli<br>ugli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ADIUM                 | ng/L  | <100    |  |
| mg/L<br>ug/L<br>ug/L<br>thene ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAL                 | ng/L  |         |  |
| mg/L<br>ug/L<br>thene ug/L<br>ug/L<br>ne ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIDES                 | mg/L  |         |  |
| ug/L<br>thene ug/L<br>ug/L<br>ne ug/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NESIUM                | III V |         |  |
| ug/L<br>thene ug/L<br>ug/L<br>mg/L<br>ne ug/L 1<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DICHLOROETHENE        | ng/L  | 52.00   |  |
| thene ug/L<br>ug/L<br>mg/L<br>ne ug/L 1<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -DICHLOROETHANE       | ng/L  | 199.00  |  |
| ug/L<br>mg/L<br>ne ug/L 1<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns-1,2-Dichloroethene | ng/L  | 166.00  |  |
| mg/L<br>ne ug/L 1<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nylene chloride       | ng/L  |         |  |
| hane ug/L 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rachloroethylene      | mg/L  |         |  |
| ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,1-Trichloroethane    | ng/L  | 1309.00 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THLOROETHYLENE        | ng/L  | 479.00  |  |

<100 <100 <100 <100

AVERAGE

ERR ERR 52.00 199.00 166.00 ERR ERR 1309.00

| POT EXTR HYD                                       | mg/L  | 7.30                | 7.30                |
|----------------------------------------------------|-------|---------------------|---------------------|
| CHEMICAL OXYGEN DEMAND<br>BIOCHEMICAL OXYGEN DEMAN | 阿万里   | 15000.00<br>8308.00 | 15000.00<br>8308.00 |
| TOTAL ORGANIC CARBON                               | mg/L  |                     | ERR                 |
| OIL & GREASE                                       | mg/L  | 13.40               | 13.40               |
| AMMONTA                                            | mg/L  |                     | ERR                 |
| NITRATE                                            | 邓九    |                     | ERR                 |
| NITRITE                                            | 邓元    |                     | ERR                 |
| TOTAL KJELDAHL NITROGEN                            | mg/L  |                     | ERR                 |
| PHOSPHORUS ortho PO4                               | 邓元    |                     | ERR                 |
| PHOSPHORUS                                         | mg/L  |                     | ERR                 |
| CYANIDE                                            | mg/L  |                     | ERR                 |
| •                                                  | mg/L  |                     | ERR                 |
| PHENOLS (EPA 604)                                  | ng/L  |                     | ERR                 |
| PHENOLS (MTH. 620)                                 | 7/bn  | 725.00              | 725.00              |
| ARSENIC                                            | ng/L  | <100                | <100                |
| BARIUM                                             | 7/bn  | 439.00              | 439.00              |
| CADMITUM                                           | ng/L  | <100                | <100                |
| CHROMIUM                                           | 7/bn  | <100                | <100                |
| COPPER                                             | ng/L  | 239.00              | 239.00              |
| IRON                                               | 7/bn  | 80160.00            | 80160.00            |
| LEAD                                               | ng/L  | 579.00              | 579.00              |
| MANGANESE                                          | ng/L  | 1205.00             | 1205.00             |
| MERCURY                                            | ng/L  | ₽                   | 7                   |
| NICKEL                                             | ng/L  | 530.00              | 530.00              |
| SELENTUM                                           | ng/L  |                     | ERR                 |
| SILVER                                             | ng/L  | 10.00               | 10.00               |
| ZINC                                               | ng/L  | 851.00              | 851.00              |
| CALCIUM                                            | 邓九    | 230.80              | 230.80              |
| MAGNESTUM                                          | 7/500 | 17.60               | 17.60               |
| POTASSIUM                                          | ng/L  |                     | ERR                 |
| MOLICIA                                            |       |                     | ERR                 |
| ICP METALS                                         | ng/L  |                     | ERR                 |
| ALUMINUM                                           | ng/L  | 1576.00             | 1576.00             |
| BERYLIUM                                           | ng/L  | <100                | <100                |

| SITE 47 CONTINUED        |       |                | AVERAGE     |
|--------------------------|-------|----------------|-------------|
| BORON                    | nd/L  |                | ERR         |
| CHLORIDE                 | T/ba  |                | ERR         |
| COLOR                    | 8     |                | ERR         |
| FLUORIDE                 | mg/L  |                | ERR         |
| Residue Filterable (TDS) | mg/L  |                | ERR         |
| Residue Non: (SS)        | mg/L  |                | ERR         |
| Residue                  | mg/L  |                | ERR         |
| Residue Volatile         | mg/L  |                | ERR         |
| Specfic Conductance      | orum  |                | ERR         |
| SULFATE                  | ng/I  |                | ERR         |
| SURFACTANTS              | ng/L  | 12.00          | 12.00       |
| TURBIDITY                | 13    |                | ERR         |
| COBALT                   | ng/T  |                | ERR         |
| MOLYBDENUM               | 7/bn  | 301.00         | 301.00      |
| TITANIOM                 | 7/bn  | <100           | <100        |
| VANADIUM                 | ng/L  | <100           | <100        |
| ALK TOTAL                | 7/bn  |                | ERR         |
| SULFIDES                 | mg/L  |                | ERR         |
| Residue Volatile         | mg/L  |                | ERR         |
| 1,1-DICHLOROETHANE       | orm   | 5.70           | 5.70        |
| 1,4-Dichlorobenzene      | ng/L  | 39.00          | 39.00       |
| trans-1,2-Dichloroethene | ng/L  | 6.70           | 6.70        |
| Methylene chloride       | 7/bn  | 32.00          | 32.00       |
| Tetrachloroethylene      | 7/bn  | 7.00           | 7.00        |
| 1,1,1-Trichloroethane    | 7/bn  | 14.00          | 14.00       |
| TOLUENE                  | ng/T  | <b>&lt;.</b> 3 | E.>         |
| Benzene                  | ng/L  | <b>&lt;.</b> 5 | <.5         |
| 1,2-dichlorobenzene      | T/but | <1             | ₽           |
| 1,3-Dichlorobenzene      | ng/L  | <b>&lt;.</b> 5 | <.5         |
| 1,4-Dichlorobenzene      | ng/L  | <b>&lt;.7</b>  | <b>C.</b> > |
| Ethyl benzene            | ng/L  | <b>&lt;.3</b>  | K.>         |
| Toluene                  | mcg   | <b>&lt;.</b> 3 | K.>         |
| CHOLOROBENZENE           | mcg   | 9.>            | 9.>         |

| SITE 48                  |       |         | AVERAGE |
|--------------------------|-------|---------|---------|
| POT EXTR HYD             | mg/L  | 2.90    | 2.90    |
| CHEMICAL OXYGEN DEMAND   | mg/L  | 750.00  | 750.00  |
| BIOCHEMICAL OXYGEN DEMAN | mg/L  | 138.00  | 138.00  |
| TOTAL ORGANIC CARBON     |       |         | ERR     |
| OIL & GREASE             | mg/L  | 13.60   | 13.60   |
| AMMONTA                  | mg/L  |         | ERR     |
| NITRATE                  |       |         | ERR     |
| NITRITE                  | mg/L  |         | ERR     |
| TOTAL KJELDAHL NITROGEN  | 17/5m |         | ERR     |
| PHOSPHORUS ortho PO4     | mg/L  |         | ERR     |
| PHOSPHORUS               | mg/L  |         | ERR     |
| CYANTDE                  | 阿克    |         | ERR     |
|                          | mg/L  |         | ERR     |
| PHENOLS (EPA 604)        | 7/6n  |         | ERR     |
|                          | 7/5n  | 35.00   | 751.00  |
| ARSENIC                  | ng/L  | <100    | <100    |
| BARTUM                   | ng/I  | <100    | <100    |
| CADMIUM                  | 7/bn  | <100    | <100    |
| CHROMIUM                 | ng/L  | <100    | <100    |
| COPPER                   | 7/bn  | <100    | <100    |
| IRON                     | 7/bn  | 3861.00 | 3861.00 |
| LEAD                     | ng/L  | <20     | <20     |
| MANGANESE                | 7/bn  | 274.00  | 274.00  |
| MERCURY                  | 7/bn  | ₽       | ₽       |
| NICKEL                   | ng/L  | <100    | <100    |
| SILVER                   | ng/L  | <10     | <10     |
| ZINC                     | ng/L  | <50     | <50     |
| CALCIUM                  | III J | 99.20   | 99.20   |
| MACANESTUM               | mg/L  | 3.90    | 3.90    |
| ALOMINOM                 | T/gn  | <100    | <100    |
| BERYLIUM                 | ng/L  | <100    | <100    |
| BORON                    | ng/I  |         | ERR     |

| CONTINUED |
|-----------|
| 48        |
| ILE       |

| ERR<br>ERR<br>ERR | ERR<br>ERR<br>981.00<br>ERR | ERR<br>ERR<br>ERR<br>3.40   | ERR<br><100<br><100<br><100<br><100<br>ERR<br>ERR                                       | ERR<br>93.00<br>ERR<br>ERR<br>5.30                                                                            |
|-------------------|-----------------------------|-----------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                   |                             | 3.40                        | <pre>&lt;100 &lt;100 &lt;100 &lt;100 &lt;100</pre>                                      | 93.00                                                                                                         |
| solved            | ilterable (TDS) on:(SS)     | oratile<br>onductance<br>rs | COBALT MOLYBDENUM UG/L TITANIUM UG/L VANADIUM UG/L ALK TOTAL SULFIDES MG/L ARSENIC UG/L | trans-1,2-Dichloroethene ug/I<br>Methylene chloride<br>Tetrachloroethylene ug/I<br>1,1,1-Trichloroethane ug/I |

| SITE 49                  |          |        | AVERAGE |
|--------------------------|----------|--------|---------|
| POT EXTR HYD             | mg/L     |        | ERR     |
| CHEMICAL OXYGEN DEMAND   | 配元       | 00.009 | 600.00  |
| BIOCHEMICAL OXYGEN DEMAN | _        | 45.00  | 45.00   |
| TOTAL ORGANIC CARBON     |          |        | ERR     |
| OIL & GREASE             | mg/L     | 1.60   | 1.60    |
| AMMONTA                  |          |        | ERR     |
| NITRATE                  |          |        | ERR     |
| NITRITE                  | mg/L     |        | ERR     |
| TOTAL KJELDAHL NITROGEN  | mg/L     |        | ERR     |
| PHOSPHORUS ortho PO4     | mg/L     |        | ERR     |
| PHOSPHORUS               | 邓元       |        | ERR     |
| CYANIDE                  | mg/L     |        | ERR     |
| CYANIDE free             | mg/L     |        | ERR     |
| PHENOLS (EPA 604)        | 7/bn     |        | ERR     |
| PHENOLS (MTH. 420)       | ng/L     | 17.00  | 17.00   |
| ARSENIC                  | 7<br>Jbn | <100   | <100    |
| BARIUM                   | 7/bn     | 214.00 | 214.00  |
| CADMITUM                 | ng/T     | <100   | <100    |
| CHROMIUM                 | 7/bn     | <100   | <100    |
| COPPER                   | ng/L     | <100   | <100    |
| IRON                     | ng/L     | 725.00 | 725.00  |
| LEAD                     | 7<br>Jbn | <20    | <20     |
| MANGANESE                | ng/I     | 124.00 | 124.00  |
| MERCURY                  | ng/L     | ₽      | ₽       |
| NICKEL                   | 7/bn     | <100   | <100    |
| SILVER                   | ng/L     |        | ERR     |
| ZINC                     | ng/L     | <50    | <50     |
| CALCIUM                  | mg/L     | 74.40  | 74.40   |
| MACNESIUM                | 邓九       | 1.50   | 1.50    |
| ALUMINUM                 | 7<br>Ton | <100   | <100    |
| BERYLIUM                 | ng/L     | <100   | <100    |
| BORON                    | ı√an     |        | ERR     |

|                   |          |       |          |                         |                  |         |                  |                     |         | 20          |           |        |            |          |          |           |          |  |
|-------------------|----------|-------|----------|-------------------------|------------------|---------|------------------|---------------------|---------|-------------|-----------|--------|------------|----------|----------|-----------|----------|--|
|                   |          |       |          |                         |                  |         |                  |                     |         | 1.20        |           |        |            |          |          |           |          |  |
|                   | mq/L     | 8     | mq/L     | ing/L                   | T/pm             | mq/L    | mq/L             | umho                | mq/L    | mq/L        | ,5        | nd/L   | ng/L       | nd/I     | nd/L     | nd/L      | mg/L     |  |
| SITE 49 CONTINUED | CHLORIDE | COLOR | FLUORIDE | Residue Filterable (TD) | Residue Non (SS) | Residue | Residue Volatile | Specfic Conductance | SULFATE | SURFACTANTS | TURBIDITY | COBALT | MOLYBDENUM | TITANIUM | VANPOTUM | ALK TOTAL | SULFIDES |  |
|                   |          |       |          |                         |                  |         |                  |                     |         |             |           |        |            |          |          | 2         | 18       |  |

| 5            |
|--------------|
|              |
| mg/L<br>mg/L |
|              |
|              |
|              |
|              |
|              |
|              |
| /L 0.02      |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
| /L <100      |
|              |
|              |
|              |
|              |
| 7            |
| <u>ک</u> .   |
|              |
| /L <100      |

| 900.00<br>ERR<br>61.33<br>ERR<br>516.67<br>ERR<br>490.33<br>142.33<br>740.00<br>34.00<br>9.50<br>9.50<br>ERR<br><100<br><100<br><100<br>2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22.00<br>420.00<br>399.00<br>114.00<br>591.00<br>46.00<br>15.00<br><100<br><100<br><100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                           |
| 400.00<br>12.00<br>460.00<br>103.00<br>475.00<br>46.00<br>0.50<br>(100<br>(100<br>(100<br>(100<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                           |
| 1400.00<br>150.00<br>670.00<br>210.00<br>1154.00<br>1154.00<br>13.00<br>(100<br>(100<br>(100<br>(100<br>274.00<br>2.20<br>2.20<br>2.10<br>1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                     |
| Dome of the property of the pr | mcg<br>mcg<br>mcg<br>mcg<br>mcg<br>mcg<br>mcg                                                                                                                                             |
| BORON BORON Dissolved CHLORIDE COLOR FLUORIDE Residue Filterable (7 Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES Methylene chloride Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BROMODICHLOROMETHANE BROMOMETHANE BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYIVINYL ETHER CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE |

SITE 50 CONTINUED

| <.5                 | <b></b> >           | 6.>                      | <b>**</b>          | <b>6.3</b>         | <b>6.3</b>         | 5.5                       | <b>6.3</b>          | <.5                      | <.5                       | <.5                      | 9.>               | 5.5                   | <.5                   | <.5               | <b>*.</b> *            | 6.>            |     | 5.5     | 5.5                 | <b>7.</b> >         | <b>**</b> 3   | <b>&lt;.3</b> | ₽                   | 9.            |
|---------------------|---------------------|--------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|---------------------------|--------------------------|-------------------|-----------------------|-----------------------|-------------------|------------------------|----------------|-----|---------|---------------------|---------------------|---------------|---------------|---------------------|---------------|
| <b>&lt;.5</b>       | <b>&lt;.7</b>       | 6.>                      | ٧.٧                | <b>&lt;.3</b>      | <b>&lt;.3</b>      | <b>&lt;.5</b>             | <b>&lt;.3</b>       | <b>&lt;.</b> 5           | <b>&lt;.5</b>             | <b>&lt;.5</b>            | 9.>               | <b>&lt;.5</b>         | <b>&lt;.5</b>         | <b>&lt;.5</b>     | <b>4.4</b>             | 6.>            |     | <.5     | <b>&lt;.5</b>       | <b>&lt;.7</b>       | <b>&lt;.3</b> | <b>&lt;.3</b> | <b>4</b> 1          | <b>*.</b> 6   |
| mcg                 | acg.                |                          | mcg                | mcg                | mcg                |                           | ncg                 |                          | PEN mcg                   |                          |                   | anc g                 | mcg                   | mcg               |                        | mcg            |     | mq/L    | 7/bn                | ng/L                | 1/bn          | T/bn          | i                   | nd/I          |
| 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | DICHLORODI FLUOROMETHANE | 1,1-DICHLOROETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 2-DICHLOROPROPEN | 1,1,2,2-TETRACHLOROETHAN | TETRACHLOROETHANE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROFLUOROMETHANE | VINYL CHLORIDE | 602 | Benzene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | Ethyl benzene | Toluene       | 1,2-DICHLOROBENZENE | CHLOROBENZENE |

SITE 50 CONTINUED

| SITE 51                  |      |               |            |        | AVERAGE       |
|--------------------------|------|---------------|------------|--------|---------------|
| POT EXTR HYD             | mq/L | 6.70          | <b>.</b> 3 |        | 6.70          |
| CHEMICAL OXYGEN DEMAND   | mg/L | 580.00        | 450.00     | 145.00 | 391.67        |
| BIOCHEMICAL OXYGEN DEMAN |      | 151.00        | 43.00      | 162.00 | 118.67        |
| TOTAL ORGANIC CARBON     | mq/L | 8.00          | 21.00      | 16.00  | 15.00         |
| OIL & GREASE             | mq/L | 0.30          | 7.80       |        | 4.05          |
| AMMONIA                  | mq/L | 0.54          | 5.20       | 0.62   | 2.12          |
| NITRATE                  | mq/L | 0.86          | 0.14       | 0.84   | 0.61          |
| NITRITE                  | mq/L | <.02          | <.02       | <.02   | <.02          |
| TOTAL KJELDAHL NITROGEN  | mq/L | 3.30          | 8.40       | 2.50   | 4.73          |
| PHOSPHORUS ortho PO4     | mg/L | 0.30          | 2.20       | 0.34   | 0.95          |
| PHOSPHORUS               | mg/L | 0.24          | 8.50       | 0.43   | 3.06          |
| CYANIDE                  | mg/L | 0.01          | 0.01       | 0.01   | 0.01          |
| CYANIDE free             |      |               |            |        | ERR           |
| PHENOLS (EPA 604)        |      | <10           |            |        | <10           |
| PHENOLS (MTH. 420)       |      | 10.00         | 20.00      | <10    | 15.00         |
| ARSENIC                  |      | <100          |            |        | <100          |
| BARIUM                   |      | <100          |            |        | <100          |
| CADMIUM                  |      | <100          |            |        | <100          |
| CHROMIUM                 |      | <100          |            |        | <100          |
| CHROMIUM Hexavalent      |      | <50           |            |        | <b>~20</b>    |
| COPPER                   |      | <100          |            |        | <100          |
| IRON                     |      | <100          |            |        | <100          |
| LEAD                     |      | <b>&lt;20</b> |            |        | <b>&lt;20</b> |
| MANCANESE                |      | <100          |            |        | <100          |
| MERCURY                  |      | マ             |            |        | ₽             |
| NICKEL                   |      | <100          |            |        | <100          |
| SELENIUM                 |      | <b>&lt;10</b> |            |        | <b>&lt;10</b> |
| SILVER                   |      | <10           |            |        | <10           |
| ZINC                     |      | <100          |            |        | <100          |
| CALCIUM                  |      | 41.00         |            |        | 41.00         |
| MACANESTUM               | mg/L | 6.20          |            |        | 6.20          |
| POTASSIUM                | mg/L |               |            |        | ERR           |
| Sodium                   | mg/L |               |            |        | ERR           |
| ICP METALS               | ng/L | 00,           |            |        | ERR           |
| ALOMINOM                 | ng/r | <100          |            |        | \n01>         |

| SITE 51 CONTINUED         |              |                |                |               | Α,            | AVERAGE        |
|---------------------------|--------------|----------------|----------------|---------------|---------------|----------------|
| BERYLIUM                  | ng/L<br>Jou  | <100           | 400.00         | 250.00        |               | <100<br>366.67 |
| BORON Dissolved           | T/bn         | )<br>)         |                | )<br>)<br>)   |               | ERR            |
| CHLORIDE                  | 1 PE 6       | 22.00          | 8.00           | 12.00         | 8.00          | 14.00          |
| FLUORIDE                  | 5 <b>5</b>   |                |                |               |               |                |
| Residue Filterable (TDS)  |              | 196.00         | 460.70         | 269.00        | 420.00        | 308.33         |
| Residue Non (SS)          |              |                |                |               |               | ERR            |
| Residue                   | mg/L         | 208.00         | <b>361.</b> 00 | 294.00        | 399.00        | 287.67         |
| Residue Volatile          | mg/L         | 30.00          | 103.00         | 84.00         |               | 72.33          |
| Specfic Conductance       | orum         | 341.00         | 475.00         | 368.00        |               | 394.67         |
| SULFATE                   | T/bm         | 33.00          | 46.00          | 39.00         |               | 39.33          |
| SURFACTANTS               | III J        | 15.00          | 0.50           | 0.40          | <b>&lt;.1</b> | 5.30           |
| TURBIDITY                 | 2            |                |                |               |               | ERR            |
| COBALT                    | ng/L         | <100           |                |               |               | <100           |
| MOLYBDENUM                | ng/L         | <100           |                |               |               | <100           |
| TITANIOM                  | ng/L         | <100           |                |               |               | <100           |
| VANADIUM                  | T/bn         | <100           |                |               |               | <100           |
| ALK TOTAL                 | III J        | 200.00         | 175.00         | 147.00        |               | 174.00         |
| SULFIDES                  | mg/L         | 0.40           | <b>&lt;.1</b>  | <b>&lt;.1</b> |               | 0.40           |
|                           | ŧ.           | 0              |                |               |               | Ġ              |
| GHT ODOD T BOOM ONE THANK | 7/58         | 0.00           |                |               |               | 0.00           |
| CHLOROD I BROWNE I HENE   | 1 /Sm        | 06.0           |                |               |               | 06.0           |
| 601                       |              |                |                |               |               |                |
| BROMOFORM                 | mcg          | <b>7.</b> >    |                |               |               | <b>7.</b> >    |
| BROMOMETHANE              | <b>⊞</b> cg  | <b>6.</b> >    |                |               |               | 6.>            |
| CARBON TETRACHLORIDE      | mcg          | <b>&lt;.</b> 5 |                |               |               | <b>&lt;.</b> 5 |
| CHLOROBENZENE             | mcg          | 9.>            |                |               |               | <b>9.</b> >    |
| CHLOROETHANE              |              | 6.>            |                |               |               | 6.>            |
| 2-CHLOROETHYIVINYL ETHER  | ar meg       | 6 <b>°</b> >   |                |               |               | 6.>            |
| CHLOROFORM                | ncg          | e:             |                |               |               | ۳.<br>۲.       |
| CHLOROMETHANE             | mcg          | 8. <b>&gt;</b> |                |               |               | ω·<br>••       |
| DIBROMOCHLOROMETHANE      | mcg          | 6.9            |                |               |               | 6.>            |
| I, Z-DICHLOROBENZENE      | <b>I</b> ICg | ₹              |                |               |               | 7              |

| SITE 51 CONTINUED              |      |                | AVERAGE                               |
|--------------------------------|------|----------------|---------------------------------------|
| 1,3-DICHLOROBENZENE            | mcg  | <.5            | · · · · · · · · · · · · · · · · · · · |
| 1,4-DICHLOROBENZENE            | mcg  | <b>/.</b> >    | <b>7.</b> >                           |
| <b>DICHLORODIFLUOROMETHANE</b> | mcg  | 6.>            | 6.>                                   |
| 1,1-DICHLOROETHANE             | mcg  | 4.4            | <b>7.4</b>                            |
| 1,2-DICHLOROETHANE             | mcg  | <b>&lt;.3</b>  | <b>&lt;.3</b>                         |
| 1,1-DICHLOROETHENE             |      | <b>&lt;.3</b>  | <b>&lt;.3</b>                         |
| TRANS-1, 2-DICHLOROETHENE      |      | <b>&lt;.</b> 5 | <b>&lt;.</b> 5                        |
| 1,2-DICHLOROPROPANE            | mcg  | <b>&lt;.3</b>  | <b>6.3</b>                            |
| CIS-1, 3-DICHLOROPROPENE       | mcg  | <b>&lt;.</b> 5 | <b>.</b> 5                            |
| TRANS-1, 2-DICHLOROPROPEN      |      | <b>&lt;.</b> 5 | <b>.</b> 5                            |
| 1,1,2,2-TETRACHLOROETHAN       | mcg  | <b>&lt;.</b> 5 | <b>.</b> .5                           |
| TETRACHLOROETHANE              | mcg  | 9*>            | 9.>                                   |
| 1,1,1-TRICHLOROETHANE          | mcg  | <*2            | <b>.</b> .5                           |
| 1,1,2-TRICHLOROETHANE          | mcg  | <b>&lt;.</b> 5 | <b>.</b> .5                           |
| TRICHLOROETHYLENE              | mcg  | <.5            | <b>&lt;.</b> 5                        |
| TRICHLOROFLUOROMETHANE         | mcg  | <b>&lt;.4</b>  | <b>4.4</b>                            |
| VINYL CHLORIDE                 | mcg  | 6.5            | 6.>                                   |
| METHYLENE CHLORIDE             | ncg  | <b>6.4</b>     | <b>***</b>                            |
| 602                            |      |                |                                       |
| Benzene                        | ng/L | <b>&lt;.</b> 5 | <b>&lt;.</b> 5                        |
| 1,3-Dichlorobenzene            | T/bn | <b>&lt;.5</b>  | <b>&lt;.</b> 5                        |
| 1,4-Dichlorobenzene            | ng/L | <b></b> >      | <b>7.</b> >                           |
| Ethyl benzene                  | ng/L | <b>&lt;.3</b>  | <b>&lt;.3</b>                         |
| Toluene                        | ng/L | <b>&lt;.</b> 3 | <b>&lt;.3</b>                         |
| 1,2-DICHLOROBENZENE            |      | <1             | ₹                                     |
| CHLOROBENZ ENE                 | 7/bn | <b>?</b> .6    | 9.>                                   |

| SITE 52                 |            |            | AVERAGE        |
|-------------------------|------------|------------|----------------|
| POT EXTR HYD            | mg/L       | 12.70      | 12.70          |
| CHEMICAL OXYGEN DEMAND  | mg/L       |            | ERR            |
| TOTAL ORGANIC CARBON    | ng/L       | 116.00     | 116.00         |
| OIL & GREASE            | Ing/L      | 21.60      | 21.60          |
| AMMONIA                 | mq/L       | 8.50       | 8.50           |
| NITRATE                 | III / DIII | 0.16       | 0.16           |
| NITRITE                 | ING/L      | 90.0       | 90.0           |
| TOTAL KJELDAHL NITROGEN | IIQ/L      | 14.80      | 14.80          |
| PHOSPHORUS ortho PO4    | mg/L       | 0.85       | 0.85           |
| PHOSPHORUS              | mg/L       | 1.00       | 1.00           |
| CYANIDE                 | 阿孔         | 0.03       | 0.03           |
| CYANIDE free            | Ing/L      |            | ERR            |
| PHENOLS (EPA 604)       | ng/L       | 170.00     | 170.00         |
| _                       | ng/L       | 580.00     | 280.00         |
| ARSENIC                 | ng/T       | <100       | <100           |
| BARIUM                  | 7/bn       | <100       | <100           |
| CADMIUM                 | ng/L       | 464.00     | 464.00         |
| CHROMIUM                | ng/L       | <100       | <b>&lt;100</b> |
| CHROMIUM Hexavalent     | ng/L       | <50        | 05°            |
| COPPER                  | ng/L       | 147.00     | 147.00         |
| IRON                    | ng/L       | 2333.00    | 2333.00        |
| LEAD                    | ng/L       | 63.00      | 63.00          |
| MANGANESE               | ng/L       | <100       | <100           |
| MERCURY                 | ng/L       | <b>^</b> 1 | ₽              |
| NICKEL                  | ng/L       | <100       | <100           |
| SILVER                  | ng/L       | <10        | <10            |
| ZINC                    | ng/L       | 304.00     | 304.00         |
| CALCIUM                 | mg/L       | 43.30      | 43.30          |
| MAGNESIUM               | mg/L       | 09.9       | 09.9           |
| POTASSIUM               | mg/L       |            | ERR            |
| SODIUM                  | mg/L       |            | ERR            |
| ICP METALS              | ng/L       |            | ERR            |
| ALUMINUM                | ng/L       | 184.00     | 184.00         |
| BERYLIUM                | ng/I       | <100       | <100           |
| BORON                   | 7/bn       | 102000.00  | 102000.00      |

| SITE 52 CONTINUED        |      |         | AVERAGE |
|--------------------------|------|---------|---------|
| BORON Dissolved          | ng/L |         | ERR     |
| CHLORIDE                 | mq/L | 8.00    | 8.00    |
| COLOR                    | B,   |         | ERR     |
| FLUORIDE                 | mq/L |         | ERR     |
| Residue Filterable (TDS) |      | 770.00  | 770.00  |
| Residue Non (SS)         |      |         | ERR     |
| Residue                  | mg/L | 714.00  | 714.00  |
| Residue Volatile         | mg/L | 524.00  | 524.00  |
| Specfic Conductance      | orum | 1358.00 | 1358.00 |
| SULFATE                  | mg/L | 14.00   | 14.00   |
| SURFACTANTS              | mg/L | 26.00   | 26.00   |
| TURBIDITY                | 5    |         | ERR     |
| COBALT                   | ng/L | <100    | <100    |
| MOLYBDENUM               | ng/L | <100    | <100    |
| TITANIUM                 | ng/L | <100    | <100    |
| VANADIUM                 | ng/L | <100    | <100    |
| ALK TOTAL                | mg/L |         | ERR     |
| SULFIDES                 | mg/L | 1.40    | 1.40    |
| 1.2-DICHLOROETHANE       | uq/L | 8.20    | 8.20    |
| METHYLENE CHLORIDE       | ng/L | 10.00   | 10.00   |
| 1,1,1-TRICHLOROETHANE    | ng/L | 10.00   | 10.00   |

| SITE 53                  |      |           | AVERAGE   |
|--------------------------|------|-----------|-----------|
| POT EXTR HYD             | mg/L | 11.00     | 11.00     |
| CHEMICAL OXYGEN DEMAND   | mg/L | 400.00    | 400.00    |
| BIOCHEMICAL OXYGEN DEMAN | mg/L | 45.00     | 45.00     |
| TOTAL ORGANIC CARBON     | mg/L |           |           |
| OIL & GREASE             | mg/L | 13.80     | 13.80     |
| AMMONIA                  | mg/L |           | ERR       |
| NITRATE                  | mg/L |           | ERR       |
| NITRITE                  | mg/L |           | ERR       |
| ч                        | mg/L |           | ERR       |
| PHOSPHORUS ortho PO4     | mg/L |           | ERR       |
| PHOSPHORUS               | mg/L |           | ERR       |
| CYANIDE                  | mg/L |           | ERR       |
| CYANIDE free             | T/bu |           | ERR       |
| PHENOLS (EPA 604)        | ng/L |           | ERR       |
| PHENOLS (MTH. 620)       | ng/L | 30.00     | 30.00     |
| ARSENIC                  | ng/L | <100      | <100      |
| BARIUM                   | ng/L | <100      | <100      |
| CADMITM                  | ng/L | <100      | <100      |
| CHROMIUM                 | ng/L | <100      | <100      |
| CHROMIUM Hexavalent      | ng/L |           | ERR       |
| COPPER                   | ng/L | 175.00    | 175.00    |
| IRON                     | ng/L | 313300.00 | 313300.00 |
| LEAD                     | ng/L | <20       | <20       |
| MANCANESE                | ng/T | 16800.00  | 16800.00  |
| MERCURY                  | ng/L | 2.60      | 2.60      |
| NICKEL                   | ng/L | <100      | <100      |
| SELENIUM                 | ng/T | <10       | <10       |
| SILVER                   | ng/L | <10       | <10       |
| ZINC                     | ng/L | 514.00    | 514.00    |
| CALCIUM                  | mg/L | 166.40    | 166.40    |
| MAGNESIUM                | mg/L | 184.80    | 184.80    |
| POTASSIUM                | mg/L |           | ERR       |
| MUIGOS                   | mg/L |           | ERR       |
| ICP METALS               | ng/L |           | ERR       |
| ALUMINOM                 | ıd√r | 001>      | 001>      |

|   | 300 |
|---|-----|
| 1 | 5   |
| Ĉ | 3   |
| G | 0   |
| E | 7   |

| AVERAGE           | <pre>&lt;100 ERR ERR ERR ERR ERR ERR ERR ERR ERR E</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.20<br>45.00<br>1.50<br>0.80<br>ERR                            | , , , , , , , , , , , , , , , , , , ,                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 37.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                                                                                                          |
|                   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                                                                                                          |
|                   | <100 1.40 <100 <100 <100 <100 <100 0.40 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20<br>45.00<br>1.50<br>0.80                                   | , , , , , , , , , , , , , , , , , , ,                                                                                                    |
|                   | (S<br>1, 20<br>1, 20 | 7.6n<br>7.6n<br>3.7<br>7.6n<br>3.7                              | ER BCG<br>BCG<br>BCG<br>BCG<br>BCG                                                                                                       |
| SITE 53 CONTINUED | BERYLIUM BORON BORON Dissolved CHLORIDE COLOR FLUORIDE Residue Filterable (TDS) Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHLOROFORM  1,3-DICHLOROBENZENE DICHLORODIFLUOROMETHANE TOLUENE | BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYTVINYL ETHER 1,4-DICHLOROBENZENE DIBROMOCHLOROMETHANE |

| AVERAGE           | <1                  | <b>7.</b> 7        | 8.>           | <b>&lt;.3</b>      | <b>&lt;.3</b>      | <b>&lt;.3</b>       | 5.5                      | <b>5.</b> >               | <.5                      | <.5                   | <.5                   | <.5               | <b>6.4</b>              | 6.>            | <.5                       |     | <.5     | < <b>.</b> 5        | <b>7.</b> >         | <b>&lt;.3</b> | 9.>           | ₽                   | <b>&lt;.3</b>  |
|-------------------|---------------------|--------------------|---------------|--------------------|--------------------|---------------------|--------------------------|---------------------------|--------------------------|-----------------------|-----------------------|-------------------|-------------------------|----------------|---------------------------|-----|---------|---------------------|---------------------|---------------|---------------|---------------------|----------------|
|                   | <1                  | <b>6.4</b>         | 8.>           | <b>&lt;.3</b>      | <b>&lt;.3</b>      | <b>&lt;.</b> 3      | <.5                      | <.5                       | <.5                      | <b>&lt;.</b> 5        | <.5                   | <b>&lt;.</b> 5    | <b>***</b>              | 6.>            | <.5                       |     | <.5     | <b>&lt;.</b> 5      | <b>7.&gt;</b>       | <b>&lt;.3</b> | <b>9.</b> >   | <b>&lt;</b> 1       | <b>&lt;.</b> 3 |
|                   | mcg                 | mcg                | ncg           | mcg                | mcg                | ncg                 | mcg.                     | <b>B</b> Cd               | acg.                     | ncg.                  | mcg.                  | mcg               | mcg                     | <b>a</b> cg    | mg/L                      |     | mq/L    | T/bn                | T/bn                | 7/bn          | mg/L          | i                   |                |
| SITE 53 CONTINUED | 1,2-DICHLOROBENZENE | 1,1-DICHLOROETHANE | CHLOROMETHANE | 1,2-DICHLOROETHANE | 1,1-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 3-DICHLOROPROPEN | 1,1,2,2-TETRACHLOROETHAN | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRI CHLOROFLUOROMETHANE | VINYL CHLORIDE | TRANS-1, 2-DICHLOROETHENE | 602 | Benzene | 1,3-DICHLOROBENZENE | 1,4-DICHLOROBENZENE | Toluene       | CHLOROBENZENE | 1,2-DICHLOROBENZENE | ETHYLBENZENE   |

| NITERATE         mg/L         ERR           NITERATE         mg/L         ERR           NITERATE         mg/L         ERR           PHOSPHORUS         mg/L         ERR           PHOSPHORUS         mg/L         ERR           PHOSPHORUS         mg/L         ERR           CYANIDE         mg/L         ERR           CYANIDE         mg/L         870.00         870.00           PHENOLS (MTH. 420)         ug/L         407.00         407.00           ARSENIC         ug/L         4100         407.00           ARSENIC         ug/L         4100         407.00           CHROWIUM         ug/L         4100         407.00           CHROWIUM         ug/L         4100         407.00           CHROWIUM         ug/L         4100         407.00           CHROWIUM         ug/L         4100         407.00           COPPER         ug/L         4100         407.00           CHROWIUM         ug/L         4100         407.00           CHROWIUM         ug/L         4100         407.00           CHROWIUM         ug/L         4100         4100           CHROWIUM         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON OIL & GREASE AMMONIA | 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 6 1 7 5 7 5 6 1 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7                                                                                                                                                                                                                                              | 211.20<br>1150.00<br>183.00<br>568.00 | 11.<br>2. 6. | 211.20<br>1150.00<br>607.00<br>ERR<br>568.00 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------------------------------------------|
| ### ### ### ### ######################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MacCommittee                                                                                           | T Summary T Summ |                                       |              |                                              |
| mg/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>2464.00<br>ug/L<br>2464.00<br>ug/L<br>2464.00<br>ug/L<br>2464.00<br>ug/L<br>2464.00<br>ug/L<br>2464.00<br>ug/L<br>2464.00<br>ug/L<br>43.00<br>mg/L<br>43.00<br>mg/L<br>ug/L<br>166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ni incomin                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |                                              |
| ugh (100 con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ć                                                                                                      | בו בה<br>הלקפו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |              | ERR E                                        |
| ught (100 ught (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04)<br>420)                                                                                            | ng/r<br>ng/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 870.00                                | 8            | 870.00                                       |
| ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100 |                                                                                                        | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <100<br><100                          | ♥ ♥          | 88                                           |
| ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L |                                                                                                        | ¶√6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 407.00                                | 4.           | 107.00                                       |
| ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L<br>(100<br>ug/L | +40[1                                                                                                  | 1/5n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <100                                  | <b>41</b>    | .00<br>FRR                                   |
| 2464.00<br>67.00<br><100<br><10<br><10<br><10<br><10<br>43.00<br>6.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | שדבוור                                                                                                 | ng/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125.00                                | 1            | 25.00                                        |
| <100 <10 <100 <10 <10 <10 <10 <10 <17 <1.00 <1.00 <1.00 <1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2464.00                               | 24           | 64.00<br>67.00                               |
| <pre>&lt;1 &lt;100 &lt;10 &lt;10 &lt;10 &lt;39.00 43.00 6.70 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <100                                  | ₽            | 00                                           |
| <pre>&lt;10 &lt;10 &lt;10 &lt;39.00 43.00 6.70 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ϋ́,                                   | 7            | 7 5                                          |
| <10<br>239.00<br>43.00<br>6.70<br>166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        | ng/r<br>1/bn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <10<br><10                            | `            | 10                                           |
| 239.00<br>43.00<br>6.70<br>166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10                                   | ~ (          | 10                                           |
| 43.00<br>6.70<br>166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 239.00                                | 2            | 39.00                                        |
| 166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.00                                 |              | 6.70                                         |
| 166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        | 1 7 bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                     |              | ERR                                          |
| 166.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |              | ER                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                        | mg/L<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 166.00                                | 1            | ERK<br>166.00                                |

| SITE 54 CONTINUED        |            |               | AVERAGE       |
|--------------------------|------------|---------------|---------------|
| BERYLIUM                 | ng/L       | <10           | <10           |
| BORON                    | ng/L       |               | ERR           |
| BORON Dissolved          | ng/L       |               | ERR           |
| CHLORIDE                 | mg/L       |               | ERR           |
| COLOR                    | 5          |               | ERR           |
|                          | mg/L       |               | ERR           |
| Residue Filterable (TDS) | mg/L       |               | ERR           |
| Residue Non (SS)         | mg/L       |               | ERR           |
| Residue                  | mg/L       |               | ERR           |
| Residue Volatile         | Ing/L      |               | ERR           |
| Specfic Conductance      | orum       |               | ERR           |
| SULFATE                  | mg/L       |               | ERR           |
| SURFACTANTS              | mg/L       | 32.00         | 32.00         |
| TURBIDITY                | <b>. E</b> |               | ERR           |
| COBALT                   | ng/L       | <100          | <100          |
| MOLYBDENUM               | ng/L       | <100          | <100          |
| TITANIOM                 | ng/L       | <100          | <100          |
| VANADIUM                 | ng/L       | <100          | <100          |
| ALK TOTAL                | mg/L       |               | ERR           |
| SULFIDES                 | mg/L       |               | ERR           |
| 1 1 DICHI OBORMUNE       | £ 2:       | 0             |               |
| TITION CHOSEN            | ין<br>די   | 00.0          | 09.0          |
| METHYLENE CHLORIDE       | ng/L       | 06.7          | 7.90          |
| 1,1,1-TRICHLOROTHANE     | ng/L       | 9.30          | 9.30          |
| 601                      |            |               |               |
| BROMODICHLOROMETHANE     | mcg        | 4.4           | 4.            |
| BROMOFORM                | mcg        | <b></b> 7     | <b>7.</b> >   |
| BROMOMETHANE             | mcd        | 6.>           | 6.>           |
| CARBON TETRACHLORIDE     | mcg.       | <b>&lt;.5</b> | <.5           |
| CHLOROBENZENE            | ncg        | <b>9.</b>     | 9.>           |
| CHLOROETHANE             | mcg        | 6.>           | 6.>           |
| 2-CHLOROETHYIVINYL ETHER | mcg        | 6.>           | 6.>           |
| CHLOROFORM               | mcg        | <b>&lt;.3</b> | <b>&lt;.3</b> |
| CHLOROMETHANE            | mcg        | 8. >          | 8.>           |

|                   | <.9<br><1                                | <.5<br>.7           | 6.                       | ו3                 | ٠.<br>۲.           | <b>~</b> .5               | <b>6.3</b>          | <b>.</b> .5              | <b>&lt;.</b> 5         | <b>&lt;.</b> 5           | <b>9.</b> >         | <.5<br>.5             | <b>&lt;.</b> 5        | <b>.</b> 5        | <b>4.</b> 4            | `           |
|-------------------|------------------------------------------|---------------------|--------------------------|--------------------|--------------------|---------------------------|---------------------|--------------------------|------------------------|--------------------------|---------------------|-----------------------|-----------------------|-------------------|------------------------|-------------|
|                   | acg<br>acg                               | mcg<br>mcg          | mcg                      | mcg                | mcg                | mcg                       | mcg                 | mcg                      | mcg                    | mcg                      | mcg                 | mcg                   | mcg                   | mcg               | mcg                    | 1           |
| SITE 54 CONTINUED | DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE | 1,3-DICHLOROBENZENE | DICHLORODI FLUOROMETHANE | 1,2-DICHLOROETHANE | 1,1-dichloroethene | TRANS-1, 2-DICHLOROETHENE | 1,2-DICHLOROPROPANE | CIS-1, 3-DICHLOROPROPENE | TRANS-1, 2-DICHLOROPEN | 1,1,2,2-TETRACHLOROETHAN | TETRACHLOROETHYLENE | 1,1,1-TRICHLOROETHANE | 1,1,2-TRICHLOROETHANE | TRICHLOROETHYLENE | TRICHLOROFLUOROMETHANE | TOTAL STATE |

| 602 Benzene 1,3-DICHLOROBENZENE | acg<br>acg | , , ,<br>? . ? .                      |            |
|---------------------------------|------------|---------------------------------------|------------|
| Į                               | mcg        | · · · · · · · · · · · · · · · · · · · | ;;         |
|                                 | mcg        | <b>9.</b><br>•••                      | 9.>        |
|                                 | mcg        | <b>.</b> 3                            | <b>6.3</b> |
| ., 2-DICHLOROBENZENE            | mcg        | 7                                     | <b>\_1</b> |

| SITE 55 CONTINUED        |       |       |
|--------------------------|-------|-------|
| BORON                    | nd/L  |       |
| BORON Dissolved          | ng/L  |       |
| CHLORIDE                 | T/bu  |       |
| COLOR                    | B     |       |
| FLUORIDE                 | mg/L  |       |
| Residue Filterable (TDS) | mg/L  |       |
| Residue Non (SS)         | mg/L  |       |
| Residue                  | mg/L  |       |
| Residue Volatile         | Ing/L |       |
| Specfic Conductance      | orum  |       |
| SULFATE                  | mg/L  |       |
| SURFACTANTS              | mg/L  | 48.00 |
| TURBIDITY                | 13    |       |
| COBALT                   | ng/L  | <100  |
| MOLYBDENUM               | ng/L  | <100  |
| TITANIOM                 | ng/L  | <100  |
| VANADIUM                 | ng/L  | <100  |
| ALK TOTAL                | mg/L  |       |
| SULFIDES                 | mg/L  |       |

ERR ERR ERR ERR ERR ERR ERR (100 (100 (100 (100

| ALK TOTAL<br>SULFIDES | ing in the second secon |       | ERR   |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| BROMODICHLOROMETHANE  | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.40  | 8.40  |
|                       | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.80  | 0.80  |
| PROPANE               | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.10  | 9.10  |
|                       | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.70  | 3.70  |
| CHLOROFORM            | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20  | 1.20  |
|                       | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.00 | 11.00 |
| ENE                   | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.00 | 11.00 |
|                       | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.00  | 2.00  |
|                       | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.40  | 2.40  |
| NE<br>SE              | T/bn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.00 | 76.00 |
|                       | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.00 | 28.00 |
| TOLUENE               | ng/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09  | 6.00  |

| 7.<br>9.<br>9.<br>9.                                               | , †<br>6, †<br>7, 7,                                            |                                                                       | 4. W. W.                                                       | <.5<br>.3<br>.3                                | <u>›</u> ^ ላ<br>የ                                                                | \ .5<br>.5<br>.5<br>.5<br>.5            | <b>.</b> . > . 9                      | 5<br>5<br>6<br>6                                                                                   |
|--------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                    |                                                                 |                                                                       |                                                                |                                                |                                                                                  |                                         |                                       |                                                                                                    |
| <br>                                                               | 6. T)                                                           | , , , ,<br>, , ,                                                      | ^ ^ ^<br>4. w. w.                                              | \$ <b>.</b> \$                                 | , , ,<br>v iv iv                                                                 | , ^ ,<br><br>                           | 4.>                                   | <br><br><br>                                                                                       |
| BCG<br>BCG<br>BCG<br>BCG                                           |                                                                 |                                                                       | ECG<br>ECG                                                     |                                                | 2 2                                                                              | į                                       | NE mcg                                | 900<br>900<br>900<br>900<br>900<br>900<br>900                                                      |
| 601 BROWOFORM BROWOMETHANE CHLOROBENZENE 2—CHLOROETHYIVINYL, ETHER | DIBROMOCHLOROMETHANE 1, 2-DICHLOROBENZENE 1, 2, DICHLOROBENZENE | 1,3-blchlorobenzene<br>1,4-blchlorobenzene<br>bichlorobifluoromethane | 1,1-bichloroethane<br>1,2-bichloroethane<br>1,1-bichloroethene | TRANS-1, 2-DICHLOROETHENE 1, 2-DICHLOROPROPANE | CIS-1,3-DICHLOROPROPENE<br>TRANS-1,2-DICHLOROPROPEN<br>1 1 2 2-TETTPACHIOROFTHAN | 1,1,2-TRICHLOROETHANE TRICHLOROETHYLENE | TRICHLOROFLUOROMETHANE VINYL CHLORIDE | 602 Benzene 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE CHLOROBENZENE ETHYLBENZENE 1,2-DICHLOROBENZENE |

| 408.00       | 4250.00                | 897.00                   | ERR                  | 504.00       | ERR                                        | ERR     | ERR     | ERR                     | ERR                  | ERR        | ERR     | ERR          | ERR  | 40.00              | <100    | <100   | ERR     | 132.00   | ERR                 | 249.00 | 2477.00 | 89.00 | 147.00    | ₽       | <100   | <10      | <10    | 321.00 | 72.00   | 10.40     | ERR       | ERR    | ERR        |
|--------------|------------------------|--------------------------|----------------------|--------------|--------------------------------------------|---------|---------|-------------------------|----------------------|------------|---------|--------------|------|--------------------|---------|--------|---------|----------|---------------------|--------|---------|-------|-----------|---------|--------|----------|--------|--------|---------|-----------|-----------|--------|------------|
| 408.00       | 4250.00                | 897.00                   |                      | 504.00       |                                            |         |         |                         |                      |            |         |              |      | 40.00              | <100    | <100   | 766.00  | 132.00   |                     | 249.00 | 2477.00 | 89.00 | 147.00    | 7       | <100   | <10      | <10    | 321.00 | 72.00   | 10.40     |           |        | 562 00     |
|              |                        |                          | mg/L                 | mg/L         | II. J. | mg/L    | mg/L    |                         | mg/L                 | mg/L       | mg/L    | mq/L         | ng/L | 1/bn               | ng/L    | ng/L   | ng/L    | ng/L     | ng/L                | ng/L   | ng/L    | ng/L  | ng/L      | ng/L    | ng/L   | ng/L     | ng/L   | ng/L   | mg/L    | mg/L      | mg/L      | mg/L   | ug/L       |
| POT EXTR HYD | CHEMICAL OXYGEN DEMAND | BIOCHEMICAL OXYGEN DEMAN | TOTAL ORGANIC CARBON | OIL & GREASE | AMMONIA                                    | NITRATE | NITRITE | TOTAL KJELDAHL NITROGEN | PHOSPHORUS ortho PO4 | PHOSPHORUS | CYANIDE | CYANIDE free |      | PHENOLS (MTH. 420) | ARSENIC | BARIUM | CADMIUM | CHROMIUM | CHROMIUM Hexavalent | COPPER | IRON    | LEAD  | MANCANESE | MERCURY | NICKEL | SELENIUM | SILVER | ZINC   | CALCIUM | MAGNESIUM | POTASSIUM | SODIUM | ICP METALS |

| SITE 56 CONTINUED           |             |                | AVERAGE       |
|-----------------------------|-------------|----------------|---------------|
| BERYLIUM                    | ng/L        | <100           | <100          |
| BORON                       | ng/L        |                | ERR           |
| BORON Dissolved             | ng/L        |                | ERR           |
| CHLORIDE                    | mg/L        |                | ERR           |
| COLOR                       | 8           |                | ERR           |
| FLUORIDE                    | mg/L        |                | ERR           |
| Residue Filterable (TDS)    | Ing/L       |                | ERR           |
| Residue Non (SS)            | mg/L        |                | ERR           |
| Residue                     | mg/L        |                | ERR           |
| Residue Volatile            | mg/L        |                | ERR           |
| Specfic Conductance         | umho        |                | ERR           |
| SULFATE                     | mg/L        |                | ERR           |
| SURFACTANTS                 | IIIG/L      | 440.00         | 440.00        |
| TURBIDITY                   | 2           |                | ERR           |
| COBALT                      | 7/bn        | <100           | <100          |
| MOLYBDENUM                  | 7/bn        | <100           | <100          |
| TITANIOM                    | ng/L        | <100           | <100          |
| VANADIUM                    | ng/L        | <100           | <100          |
| ALK TOTAL                   | mg/L        |                | ERR           |
| SULFIDES                    | mg/L        |                | ERR           |
| METHYLENE CHLORIDE          | ng/L        | 46.00          | 6.>           |
| TETRACHLOROETHYLENE         | mcg.        | 22.00          |               |
|                             |             |                |               |
| <b>BROMODICHLOROMETHANE</b> | <b>m</b> cq | <b>4.4</b>     | 4.4           |
| BROMOFORM                   | mcg         | <b></b> >      | <b>7.</b> >   |
| BROMOMETHANE                | mcg         | 6.>            | 6.>           |
| CARBON TETRACHLORIDE        | ncg         | <b>&lt;.</b> 5 | <.5           |
| CHLOROBENZENE               | mcg         | <b>9.</b> >    | 9.>           |
| CHLOROETHANE                |             | 6.>            | 6.>           |
| 2-CHLOROETHYIVINYL ETHER    |             | 6.>            | 6.>           |
| CHLOROFORM                  | mcg         | <b>&lt;.</b> 3 | <b>&lt;.3</b> |
| DIBROMOCHLOROMETHANE        | mcg         | 6.>            | 6.>           |
| 1,2-DICHLOROBENZENE         | ncg         | 4              | ₽             |
| 1,3-DICHLOROBENZENE         | mcg         | <b>&lt;.</b> 5 | <.5           |

| SITE 56 CONTINUED         |                  |                | AVERAGE               |
|---------------------------|------------------|----------------|-----------------------|
| 1,4-DICHLOROBENZENE       | BCg              | <b></b> >      | 7 /                   |
| DICHLORODI FLUOROMETHANE  | mcg.             | 6.>            | · · ·                 |
| 1,1-DICHLOROETHANE        | <b>B</b> CG      | <b>&lt;.4</b>  |                       |
| CIS-1, 3-DICHLOROPROPENE  |                  | <b>^.</b> 5    | * <b>(</b> * <b>\</b> |
| TRANS-1, 2-DICHLOROPROPEN |                  | <b>&lt;.</b> 5 | . v                   |
| TETRACHLOROETHYLENE       |                  | <b>9. ?</b>    | · ·                   |
| 1,1,2,2-TETRACHLOROETHAN  |                  | <b>~.</b> 5    | , v                   |
| 1,1,1-TRICHLOROETHANE     |                  | <b>~.</b> 5    | , v                   |
| 1,1,2-TRICHLOROETHANE     | mcg.             | <b>~.</b> 5    | , v                   |
| TRICHLOROETHYLENE         | mcg              | <b></b> 5      | ) tr                  |
| TRICHLOROFLUOROMETHANE    | ncg.             | <b>4.</b> 4    | 4 ^                   |
| VINYL CHLORIDE            | mcg              | 6.>            | 6.>                   |
| 602                       |                  |                |                       |
| Benzene                   | mcg              | ·.5            | \<br>\                |
| 1,3-DICHLOROBENZENE       | inc <sub>g</sub> | <.5            | , r                   |
| 1,4-DICHLOROBENZENE       | mcg              | <b>7.</b> >    |                       |
| CHLOROBENZENE             | mcg              | <b>4.6</b>     | • • •                 |
| ETHYLBENZENE              | mcg              | <b>**</b> 3    | » m                   |
| 1,2-dichlorobenzene       | mcg              | <1             |                       |
| TOLUENE                   | mcg              | <b>&lt;.3</b>  | ÷, >                  |

SITE 56 CONTINUED

| AVERAGE |  |
|---------|--|
|         |  |

|                          | ma.7.          | 145.60           | 145.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOI EALS GEORGE          |                | 10.00            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CHEMICAL UXIGEN DEPART   |                | 222.00           | 222.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BIOCHEMICAL UNIGEN DEFEN |                | )<br>            | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOTAL ORGANIC CARBON     | 1 / T          | 156 80           | 156.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OIL & GREASE             | בו לינו        | 99:001           | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AMMONTA                  | וואק/בו<br>היי |                  | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NITRATE                  | 1/5            |                  | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NITRITE                  | יי אַנַ        |                  | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOTAL KJELDAHL NITKUEN   |                |                  | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PROSPROKUS OLUTO FOR     |                |                  | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CVANTOE                  | mq/L           |                  | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CVANTDE free             | mq/L           |                  | ANG CONTRACTOR OF THE CONTRACT |
| purant (FDA 604)         | ng/L           |                  | PKE STORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _                        | ng/L           | 227.00           | 227.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •                        | ng/L           | <100             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BARTUM                   | ng/L           | <100             | 136 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CADMIUM                  | ng/T           | 135.00           | 133.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CHROMIUM                 | 7/bn           | <100             | REE COTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CHROMIUM Hexavalent      | 7/bn           | ( )<br>( )       | 165.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| COPPER                   | J/bn           | 165.00           | 5107.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IRON                     | ng/r           | 510/.00          | 293.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LEAD                     | ng/L           | 293.00           | 214.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MANGANESE                | ng/r           | 214.00           | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MERCURY                  | ng/r           | 17               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NICKEL                   | ng/r           | \\\              | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SILVER                   | ng/L           | 411 00<br>411 00 | 471.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ZINC                     | ng/r           | 4/1.00           | 48.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CALCIUM                  | 7/5            |                  | 7.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAGNESIUM                | ng/L           | 06./             | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| POTASSIUM                | mg/L           |                  | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Molos                    | 1/5m           |                  | ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ICP METALS               | ng/r           | 00 700           | 234.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ALUMINUM<br>RERYT, TIM   | 7/bn<br>1/bn   | <100<br><100     | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | ì              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| NTINUED |
|---------|
| 57 88   |
| SITE    |

| BORON Dissolved CHLORIDE COLOR       | T bin<br>T bin<br>T bin<br>D |               | ERR<br>ERR<br>ERR |
|--------------------------------------|------------------------------|---------------|-------------------|
| FLUORIDE<br>Residue Filterable (TDS) |                              |               | ERR               |
| Non (SS)                             |                              |               | ERR               |
| Residue                              | mg/L                         |               | ERR               |
| Residue Volatile                     | mg/L                         |               | ERR               |
| Specfic Conductance                  | orlim                        |               | ERR               |
| SULFATE                              | mg/L                         |               | ERR               |
| SURFACTANTS                          | mg/L                         | 4.90          | 4.90              |
| TURBIDITY                            | 13                           |               | 6.>               |
| COBALT                               | ng/L                         | <100          | <100              |
| MOLYBDENUM                           | ng/L                         | <100          | <100              |
| TITANIOM                             | ng/L                         | <100          | <100              |
| VANADIUM                             | ng/L                         | <100          | <100              |
| ALK TOTAL                            | mg/L                         |               | ERR               |
| SULFIDES                             | II. Z. Z.                    |               | ERR               |
| 1,1-DICHLOROETHENE                   | ng/L                         | 11.00         | 11.00             |
| 1,2-DICHLOROETHANE                   | ncg                          | 4.30          | 4.30              |
|                                      | ng/L                         | 14.00         | 14.00             |
| 601                                  |                              |               |                   |
| BROMODICHLOROMETHANE                 | mcg                          | <b>&lt;.4</b> | <b>7.4</b>        |
| BROMOFORM                            | mcg                          | <b>7.&gt;</b> | <b>7.</b> >       |
| BROMOMETHANE                         | mcg                          | 6.>           | 6.>               |
| CARBON TETRACHLORIDE                 | ncg                          | <b>&lt;.5</b> | <.5               |
| CHLOROBENZENE                        | acg.                         | 9.>           | 9.>               |
| CHLOROETHANE                         | mcg                          | 6.>           | 6.>               |
| 2-CHLOROETHYIVINYL ETHER             |                              | 6.>           | 6. >              |
| CHLOROFORM                           | mcg                          | <b>&lt;.3</b> | <b>6.3</b>        |
| CHLOROMETHANE                        | mcg                          | <b>8.</b> >   | 8. >              |
| DIBROMOCHLOROMETHANE                 | mcg                          | 6.>           | 6.>               |

## SITE 57 CONTINUED

| 1,2-DICHLOROBENZENE            | mcg | <1 _           | ₽,          |
|--------------------------------|-----|----------------|-------------|
| 1,3-DICHLOROBENZENE            | mcg | <b>``</b> 2    | ·.5         |
| 1,4-DICHLOROBENZENE            | mcg | <b>C.</b> >    | <b>6.7</b>  |
| <b>DICHLORODIFLUOROMETHANE</b> | mcg | 6.>            | o.<br>•     |
| 1,1-DICHLOROETHENE             | mcg | <b>&lt;.3</b>  | <b>.</b> 3  |
| 1,2-DICHLOROPROPANE            | mcg | <b>&lt;.3</b>  | <b>.</b> 3  |
| trans-1,2-DICHLOROETHENE       | mcg | <b>&lt;.</b> 5 | ·.5         |
| CIS-1, 3-DICHLOROPROPENE       | mcg | <b>&lt;.5</b>  | ·.5         |
| TRANS-1, 2-DICHLOROPROPEN      | mcg | <b>&lt;.5</b>  | <b>.</b> 5  |
| 1,1,2,2-TETRACHLOROETHAN       | mcg | <b>&lt;.5</b>  | <b>.</b> 5  |
| 1,1,2-TRICHLOROETHANE          | mcg | <b>&lt;.5</b>  | <b>.</b> 5  |
| <b>TETRACHLOROETHYLENE</b>     | mcg | 9.>            | <b>9. \</b> |
| TRICHLOROETHYLENE              | mcg | <b></b> 5      | <b>.</b> 5  |
| TRICHLOROFLUOROMETHANE         | mcg | <b>***</b>     | <b>4.4</b>  |
| VINYL CHLORIDE                 | mcg | 6.>            | <b>6.</b> > |
| 602                            |     |                |             |
| Benzene                        | mcg | <b>&lt;.5</b>  | <b>.</b> 5  |
| 1,3-DICHLOROBENZENE            | mcg | <b></b> 5      | <b>.</b> 5  |
| 1,4-DICHLOROBENZENE            | mcg | <b>.</b> .>    | <b>7.</b> > |
| CHLOROBENZENE                  | mcg | 9*>            | <b>9.</b>   |
| ETHYLBENZENE                   | mcg | <b>6.3</b>     | e.,         |
| 1,2-DICHLOROBENZENE            | mcg | ₽              | ₽           |

| SITE 58                    |                         |         | AVERAGE       |
|----------------------------|-------------------------|---------|---------------|
| POT EXTR HYD               | mg/L                    | 103.20  | 103.20        |
| SIOCHEMICAL OXYGEN DEMAN   |                         | 525.00  | 525.00        |
| IOTAL ORGANIC CARBON       | III J                   |         | ERR           |
| OIL & GREASE               | T/pm                    | 110.40  | 110.40        |
| AMMONIA                    | mg/L                    |         | ERR           |
| NITRATE                    | mg/L                    |         | ERR           |
| NITRITE                    | mg/L                    |         | ERR           |
| IOTAL KJELDAHL NITROGEN    | mg/L                    |         | ERR           |
| PHOSPHORUS ortho PO4       | mg/t                    |         | ERR           |
| PHOSPHORUS                 | mg/L                    |         | ERR           |
| TANTOE FOOD                | mg/L                    |         | EKK           |
|                            | ייל אַנּינ<br>ייל אַנינ |         | XXII C        |
| _                          | ng/I                    | 109.00  | 109.00        |
| ARSENIC                    | ug/L                    | <100    | <100          |
| BARIUM                     | ng/L                    | <100    | <100          |
| CADMIUM                    | ng/L                    | <100    | <100          |
| CHROMIUM                   | ng/L                    | <100    | <100          |
| <b>THROMIUM</b> Hexavalent | ng/L                    |         | ERR           |
| COPPER                     | ng/L                    | <100    | <100          |
| IRON                       | ng/L                    | 2221.00 | 2221.00       |
| LEAD                       | ng/L                    | 46.00   | 46.00         |
| MANGANESE                  | ng/L                    | 305.00  | 305.00        |
| MERCURY                    | ng/L                    | ₽       | ₹             |
| NICKEL                     | ng/L                    | <100    | <100          |
| SELENIUM                   | ng/L                    | <10     | <10           |
| SILVER                     | ng/L                    | <10     | <10           |
| ZINC                       | ng/L                    | <100    | <100          |
| CALCIUM                    | mg/L                    | 66.20   | 66.20         |
| MAGNESIUM                  | mg/L                    | 3.40    | 3.40          |
| POTASSIUM                  | mg/L                    |         | ERR           |
| SODIUM                     | mg/L                    |         | ERR           |
| ALIMINIM                   | IIIQ/L                  | 317 00  | ERR<br>317 00 |
|                            | י<br>נ                  |         | 00.110        |

| <pre>&lt;100 EERR EERR EERR EERR EERR EERR EERR E</pre>                                                                                          |                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                  |                                                                                                                                                                                                                  |
| <100<br>9.20<br><100<br><100<br><100<br><100                                                                                                     | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                            |
| Tom<br>Tom<br>Tom<br>Tom<br>Tom<br>Tom<br>Tom<br>Tom<br>Tom<br>Tom                                                                               | mcg<br>mcg<br>mcg<br>mcg<br>mcg<br>mcg<br>mcg<br>mcg                                                                                                                                                             |
| YLIUM ON Dissolved ON Dissolved ORIDE ORIDE idue Filterable idue Non (SS) idue Volatile cfic Conductance FATE FATE ALT YRDENUM ADIUM TOTAL FIDES | BROWODICHLOROMETHANE BROWOFORM BROWOFORM BROWOFORM CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHANE 2-CHLOROETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE |

SITE 58 CONTINUED

| 0.                                                                               | , , , ,                                                              | v. , , , , , , , , , , , , , , , , , , ,                                                 | *                                                                                                   | <pre></pre>                                                                                        |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 0. 4. %<br>0. 4. %                                                               | <br>                                                                 | * * * * *<br>* * * * * * * * * * * * * * *                                               | * * * * *<br>7. 7. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.                                     | <.5 <.7 <.6 <.3                                                                                    |
| incg<br>incg                                                                     |                                                                      | necg<br>necg                                                                             | mcg<br>mcg<br>mcg                                                                                   | 658<br>658<br>658<br>658<br>658                                                                    |
| DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE | TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE | TRANS-1,2-DICHLOROPROPEN METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHAN TETRACHLOROETHYLENE | 1,1,2-TRICHLOROETHANE 1,1,1-trichloroethane TRICHLOROETHYLENE TRICHLOROFIUOROMETHANE VINYL CHLORIDE | 602 Benzene 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE CHLOROBENZENE ETHYLBENZENE 1,2-DICHLOROBENZENE |

SITE 58 CONTINUED

| 19.00<br>900.00<br>64.00<br>ERR                                                                | ERR<br>ERR<br>ERR<br>ERR                       | ERR<br>ERR<br>ERR<br>ERR                             | 105.00<br><100<br><100<br><100<br><100        | ERR <100 495.00 33.00 139.00                                          | (100<br>(100<br>(100<br>85.30<br>8.80<br>ERR<br>ERR                                   | 516.00<br><100<br>ERR         |
|------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------|
| 19.00<br>900.00<br>64.00                                                                       | 00.04                                          |                                                      | 105.00<br><100<br><100<br><100<br><100        | <100<br>495.00<br>33.00<br>139.00                                     | <100<br><100<br><100<br>85.30<br>8.80                                                 | 516.00<br><100                |
| ND<br>EMAN                                                                                     | Z<br>Li                                        |                                                      | 7 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5       |                                                                       |                                                                                       | T/bn<br>T/bn<br>T/bn          |
| POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON OTT & CERASE | AMONIA NITRATE NITRITE TOTAL KIELDAHL NITROGEN | PHOSPHORUS ortho PO4 PHOSPHORUS CYANIDE CYANIDE free | PHENOLS (420) ARSENIC BARIUM CADMIUM CHROMIUM | CHROMIUM Hexavalent<br>COPPER<br>IRON<br>LEAD<br>MANGANESE<br>MERCIRY | NICKEL<br>SILVER<br>ZINC<br>CALCIUM<br>MAGNESIUM<br>POTASSIUM<br>SODIUM<br>ICP METALS | ALUMINUM<br>BERYLIUM<br>BORON |

| CONTINUED |
|-----------|
| 29        |
| SITE      |

| 1,2-DICHLOROBENZENE mcg |
|-------------------------|

| ETHENE mcg  PROPENE mcg PROPEN mcg ANE | DICHLORODIFLUOROMETHANE      | mcg. | 0.>            | 6. ×           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|----------------|----------------|
| DICHLOROPROPANE mcg  1, 3-DICHLOROPROPENE mcg  NS-1, 2-DICHLOROPROPENE mcg  KYLENE CHLORIDE mcg  1, 2, 2-TETRACHLOROETHAN mcg  RACHLOROETHYLENE mcg  1, 1-trichloroethane mcg  CHLOROETHYLENE mcg  CHLOROETHYLENE mcg  CHLOROFLUOROMETHANE mcg  CHLOROFLUOROMETHANE mcg  CHLOROFLUOROMETHANE mcg  CHLOROFLUOROMETHANE mcg  CHLOROBENZENE mcg  DICHLOROBENZENE mcg  SENE  PICHLOROBENZENE mcg  WCG  DICHLOROBENZENE mcg  CHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Œ                            |      | # LC \         |                |
| -1,3-DICHLOROPROPENE mcg NS-1,2-DICHLOROPROPENE mcg HYLENE CHLORIDE mcg ,2,2-TETRACHLOROETHAN mcg ,2,2-TRICHLOROETHANE mcg ,2-TRICHLOROETHANE mcg ,1-trichloroethane mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg CHLOROENZENE mcg DICHLOROBENZENE mcg -DICHLOROBENZENE mcg SROBENZENE mcg -DICHLOROBENZENE mcg SROBENZENE mcg -DICHLOROBENZENE mcg CHLOROBENZENE mcg -DICHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                            |      | .3             | <b>6.3</b>     |
| NS-1, 2-DICHLOROPROPEN mcg HYLENE CHLORIDE mcg ,2, 2-TETRACHLOROETHAN mcg RACHLOROETHYLENE mcg ,1-trichloroethane mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg CHLOROENZENE mcg DICHLOROBENZENE mcg Sene DICHLOROBENZENE mcg PDICHLOROBENZENE mcg CHLOROBENZENE mcg DROBENZENE mcg DROBENZENE mcg CHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IS-1, 3-DICHLOROPROPENE      | mcg  | <.5            | <b>.</b> .5    |
| HYLENE CHLORIDE mcg ,2,2-TETRACHLOROETHAN mcg RACHLOROETHYLENE mcg ,2-TRICHLOROETHANE mcg ,1-trichloroethane mcg CHLOROFTHYLENE mcg CHLOROFTUOROMETHANE mcg CHLOROFLUOROMETHANE mcg YL CHLORIDE mcg DICHLOROBENZENE mcg -DICHLOROBENZENE mcg CROBENZENE mcg -DICHLOROBENZENE mcg CHLOROBENZENE mcg -DICHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RANS-1, 2-DICHLOROPROPEN     | mcg  | <.5            | <b>.</b> .5    |
| ,2,2-TETRACHLOROETHAN mcg RACHLOROETHYLENE mcg ,2-TRICHLOROETHYLENE mcg ,1-trichloroethane mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg YL CHLORIDE mcg AL CHLORIDE mcg OROBENZENE mcg -DICHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STHYLENE CHLORIDE            | mcg  | <b>**</b>      | <b>4.4</b>     |
| RACHLOROETHYLENE mcg ,2-TRICHLOROETHANE mcg ,1-trichloroethane mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg CHLOROETHYLENE mcg YL CHLORIDE mcg DICHLOROBENZENE mcg DICHLOROBENZENE mcg OROBENZENE mcg CHLOROBENZENE mcg OROBENZENE mcg CHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1, 2, 2-TETRACHLOROETHAN     |      | <b>&lt;.5</b>  | <b>.</b> .5    |
| ,2-TRICHLOROETHANE mcg ,1-trichloroethane mcg CHLOROETHYLENE mcg CHLOROFLUOROMETHANE mcg CHLORIDE mcg  Zene mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg OROBENZENE mcg OROBENZENE mcg -DICHLOROBENZENE mcg OROBENZENE mcg -DICHLOROBENZENE mcg OROBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>STRACHLOROETHYLENE</b>    | mcg  | 9*>            | <b>9. \</b>    |
| ,1-trichloroethane mcg CHLOROETHYLENE mcg CHLOROFLUOROMETHANE mcg YL CHLORIDE mcg Zene mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg OROBENZENE mcg SYLBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-TRICHLOROETHANE          | mcg  | <b>&lt;.5</b>  | <b>.</b> .5    |
| CHLOROETHYLENE mcg CHLOROFLUOROMETHANE mcg YL CHLORIDE mcg zene mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg OROBENZENE mcg ALBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1-trichloroethane          | mcg  | <.5            | <b>.</b> .5    |
| CHLOROFILDOROMETHANE mcg YL CHLORIDE mcg zene DICHLOROBENZENE mcg -DICHLOROBENZENE mcg OROBENZENE mcg OROBENZENE mcg ALBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>RICHLOROETHYLENE</b>      | mcg  | <b>&lt;.5</b>  | <b>.</b> .5    |
| YL CHLORIDE mcg zene mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg OROBENZENE mcg YLBENZENE mcg -DICHLOROBENZENE mcg -DICHLOROBENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>LICHLOROFLUOROMETHANE</b> | mcg  | <b>**</b>      | 4.4            |
| zene  DICHLOROBENZENE mcg  DICHLOROBENZENE mcg OROBENZENE mcg Mcg YLABENZENE mcg Mcg PLAENZENE mcg Mcg ALAENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INYL CHLORIDE                | mcg  | 6.9            | <b>6.</b> >    |
| BENZENE mcg BENZENE mcg E mcg E mcg mcg mcg mcg mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                            |      |                |                |
| BENZENE mcg BENZENE mcg E mcg mcg mcg mcg mcg secsory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inzene                       | mcg  | <b>&lt;.5</b>  | <b>.</b> .5    |
| BENZENE mcg E mcg mcg mcg Mcg SENZENE mcg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-DICHLOROBENZENE            | mcg  | <b>&lt;.5</b>  | <b>&lt;.</b> 5 |
| E mcg mcg mcg senziene mcg <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , 4-DICHLOROBENZENE          | mcg  | <b>L.&gt;</b>  | <b>7.</b> >    |
| BENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ILOROBENZENE                 | mcg  | 9.>            | 9.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HYLBENZENE                   | mcg  | <b>&lt;.</b> 3 | <b>.</b> .     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-DICHLOROBENZENE            | neg  | <1             | ₽              |

SITE 59 CONTINUED

### APPENDIX H

INDUSTRIAL WASTEWATER BENCH SCALE LABORATORY RESULTS

Industrial Wastewater Bench Scale Laboratory Results

| Parameter  | Sample | 25mg/L         | 50 mg/L | 100 mg/L | 150 mg/I       | NAOH |
|------------|--------|----------------|---------|----------|----------------|------|
| Molybedium | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Cobalt     | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Titanium   | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Beryllium  | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Magnesium  | 6.2    | 5.8            | 5.8     | 5.9      | 5.9            | 1.0  |
| Calcium    | 42.1   | 38.9           | 39.4    | 39.5     | 40.5           | 37.8 |
| Zinc       | •335   | .287           | <.10    | .129     | .247           | <.10 |
| Copper     | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Nickel     | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Iron       | 3.345  | 2.390          | .984    | 1.111    | 1.966          | .352 |
| Manganese  | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Chromium   | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Cadmium    | .110   | <b>&lt;.10</b> | <.10    | ٠ < • 10 | <b>&lt;.10</b> | <.10 |
| Vanadi um  | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
| Aluminum   | <.10   | 1.54           | 1.16    | 2.50     | 7.00           | <.10 |
| Barium     | <.10   | <.10           | <.10    | <.10     | <.10           | <.10 |
|            |        |                |         |          |                |      |

APPENDIX I

VOLATILE ORGANIC RESULTS

## VOLATILE ORGANIC RESULTS (EPA Method 624)

| Compound                   | Method<br>Detection<br>Limits<br>(ug/L) |  |
|----------------------------|-----------------------------------------|--|
| cis-1,3-Dichloropropene    | 5                                       |  |
| 2-Chloroethyl Vinyl Ether  | 10                                      |  |
| Bromoform                  | 5                                       |  |
| 2-Hexanoe                  | 10                                      |  |
| 4-Methyl-2-Penganone       | 10                                      |  |
| Tetrachloroethene          | 5                                       |  |
| Toluene                    | 5                                       |  |
| Chlorobenzene              | 5<br>5<br>5<br>5<br>5                   |  |
| Ethyl benzene              | ,<br>,                                  |  |
| •                          |                                         |  |
| Styrene<br>Xylenes (Total) | )<br>E                                  |  |
| Chloromethane              |                                         |  |
|                            | 10                                      |  |
| Bromomethane               | 10                                      |  |
| Vinyl chloride             | 10                                      |  |
| Chloroethane               | 10                                      |  |
| Methylene chloride         | 10                                      |  |
| Acetone                    | 40                                      |  |
| Acrolein                   | 20                                      |  |
| Acrylonitrile              | 5                                       |  |
| Carbon disulfide           | 5                                       |  |
| 1,1-Dichloroethene         | 5<br>5<br>5                             |  |
| 1,1-Dichloroethane         | 5                                       |  |
| 1,2-Dichloroethene         | 5                                       |  |
| Chloroform                 | 5                                       |  |
| 1,2-Dichloroethane         | 5                                       |  |
| Methylethyl ketone         | 10                                      |  |
| 1,1,1-Trichloroethane      | 5                                       |  |
| Carbon Tetrachloride       | 5                                       |  |
| Vinyl acetate              | 10                                      |  |
| Bromodichloromethane       | 5                                       |  |
| 1,1,2,2-Tetrachloroethane  | 5                                       |  |
| 1,2-Dichloropropane        | 5                                       |  |
| trans-1,3-Dichloropropene  | 5<br>5<br>5<br>5                        |  |
| Trichloroethene            | 5                                       |  |
| Dibromochloromethane       | 5                                       |  |
| 1,1,2-Trichloroethane      | 5                                       |  |
| Benzene                    | 5                                       |  |

### EPA Method 625

| Analyte(s)                  | Limits of<br>Detection |  |
|-----------------------------|------------------------|--|
| Diethyl Phthalate           | 1.9                    |  |
| 4-Chlorophenyl-phenylether  | 4.2                    |  |
| Fluorene                    | 1.9                    |  |
| 2-Methyl-4,6-dinitrophenol  | 24                     |  |
| n-Nitrosodiphenylamine      | 1.9                    |  |
| 4-Bromophenylether          | 1.9                    |  |
| Hexachlorobenzene           | 1.9                    |  |
| Beta-BHC                    | 4.2                    |  |
| Pentachlorophenol           | 3.6                    |  |
| Phenanthrene                | 5.4                    |  |
| Anthracene                  | 1.9                    |  |
| delta-BHC                   | 3.1                    |  |
| Heptachlor                  | 1.9                    |  |
| Di-n-butyl phthalate        | 2.5                    |  |
| Aldrin                      | 1.9                    |  |
| Heptachlor Epoxide          | 2.2                    |  |
| Fluoranthene                | 2.2                    |  |
| Pyrene                      | 1.9                    |  |
| Endosulfan I                | 20                     |  |
| 4,4'-DDE                    | 5.6                    |  |
| Benzidine                   | 44                     |  |
| Dieldrin                    | 2.5                    |  |
| 4,4'-DDD                    | 2.8                    |  |
| Endosulfan II               | 20                     |  |
| Endrin Aldehyde             | 20                     |  |
| Benzyl-butylphthalate       | 2.5                    |  |
| 4,4'-DDT                    | 4.7                    |  |
| Endosulfan Sulfate          | 5.6                    |  |
| Bis(2-ethylhexyl)phthalate  | 2.5                    |  |
| N-Nitrosodimethylamine      | 5.0                    |  |
| Phenol                      | 1.5                    |  |
| Bis(2-Chloroethyl)ether     | 5.7                    |  |
| 2-Chlorophenol              | 3.3                    |  |
| 1,3-Dichlorobenzene         | 1.9                    |  |
| 1,4-dichlorobenzene         | 4.4                    |  |
| 1,2-Dichlorobenzene         | 1.9                    |  |
| Bis(2-Chloroisopropyl)Ether | 5.7                    |  |
| N-Nitrosodi-n-propylamine   | 3.0                    |  |
| Hexachloroethane            | 1.6                    |  |

| Analyte(s)                      | Limits of<br>Detection |  |
|---------------------------------|------------------------|--|
| Nitrobenzene                    | 1.9                    |  |
| Isophorone                      | 2.2                    |  |
| 2-Nitrophenol                   | 3.6                    |  |
| 2,4-Dimethylphenol              | 2.7                    |  |
| 1,2,4-Trichlorobenzene          | 1.9                    |  |
| Napthalene                      | 1.6                    |  |
| Hexachlorobutadiene             | 0.9                    |  |
| 4-Chloro-3-methylphenol         | 3.0                    |  |
| Hexachlorocylopentadiene        | 5.0                    |  |
| 2,4,6-Trichlorophenol           | 2.7                    |  |
| 2-Chloronaphthalene             | 1.9                    |  |
| Dimethylphthalate               | 1.6                    |  |
| 2,6-Dinitotoluene               | 1.9                    |  |
| Acenaphtylene                   | 4.2                    |  |
| Acenaphthene                    | 1.9                    |  |
| 2,4-Dinitrophenol               | 42                     |  |
| 4-Nitrophenol                   | 2.4                    |  |
| 2,4-Dinitrotoluene              | 5.7                    |  |
| Benzo(a)anthracene              | 7.8                    |  |
| Chrysene                        | 2.5                    |  |
| 3,3-Dichlorobenzidine           | 16.5                   |  |
| Di-n-octyl phthalate            | 2.5                    |  |
| Benzo(b)fluoranthene            | 4.8                    |  |
| Benzo(k)fluoranthene            | 2.5                    |  |
| Benzo(a)pyrene                  | 2.5                    |  |
| Indeno(1,2,3-cd)pyrene          | 3.7                    |  |
| Dibenzo(a,h)anthracene          | 2.5                    |  |
| Benzo(ghi)perylene<br>Chlordane | 4.1                    |  |
|                                 | 40                     |  |
| Toxaphene<br>Aroclor 1015       | 40<br>40               |  |
| Aroclor 1221                    | 30                     |  |
| Aroclor 1221<br>Aroclor 1232    | 40                     |  |
| Aroclor 1242                    | 40                     |  |
| Aroclor 1242<br>Aroclor 1248    | 40                     |  |
| Aroclor 1254                    | 36                     |  |
| Aroclor 1260                    | 40                     |  |
| 1120420- 1600                   | 70                     |  |

Appendix J
Sample Report of Analysis

# ATR FORCE OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY BROOKS AFB, TEXAS, 78235-5501

#### REPORT OF ANALYSIS

BASE SAMPLE NO: GN900001

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIER: NOOXXX DATE RECEIVED: 900125

DATE COLLECTED: 900125 DATE REPORTED: 900209

SAMPLE SUBMITTED BY: 836 MEDICAL GROUP/SGPB

PRESERVATION GROUP E

DEHL SAMPLE NUMBER: 90005273

Test

Results

Units

Phenol

120

ug/L

Comments:

SAMPLE GAVE POSITIVE RESULTS FOR PHENOL BY BOTH SPA METHODS 420.1 AND 420.2.

This was a sample of Rinsolve submitted to AFOEHI/SA and placed in agreeous solution. Aqueous solution extracted and simplice for plunds, with result indicated,

Approved by:

Duryl 3. Bird, GS-12 Chief, Inorganic Analysis

TO:

AFOEHL/EQE

BROOKS AFB TX 78235-5501

PAGE 1

# Distribution List

| HQ USAF/SGPA                                                | Со | pies |
|-------------------------------------------------------------|----|------|
| Bolling AFB DC 20332-6188                                   |    | 2    |
| HQ AFSC/SGP<br>Andrews AFB DC 20334-5000                    |    | 2    |
| 836 Medical Group/SGPB Davis-Monthan AFB AZ 85707-5300      | -  | 3    |
| 836 CES/DEEV Davis-Monthan AFB AZ 85707-5000                |    | 3    |
| HQ TAC/DEEV<br>Langley AFB VA 23665-5578                    |    | 2    |
| HQ TAC/DEM<br>Langley AFB VA 23665-5578                     |    | 1    |
| HQ TAC/SGPB<br>Langley AFB VA 23665-5578                    |    | 2    |
| AAMRL/TH Wiight-Patterson AFB OH 45433-6573                 |    | 1    |
| 7100 CSW Medical Center/SGB<br>APO New York 09220-5300      |    | 1    |
| OL AD, AFOEHL<br>A <sup>3</sup> O San Francisco 96274-5000  |    | 1    |
| USAFSAM/TSK/ED/EDH/EDZ<br>Brooks AFB TX 78235-5301          |    | 1 ea |
| Lafense Technical Information Center (DTIC) Cameron Station |    |      |
| Flexandria VA 22304-6145                                    | 7  | 2    |
| HQ USAF/LEEV Lolling AFB DC 20330-5000                      | ä  | 2    |
| n 2 AFESC/RDV<br>I vndall AFB FL 32403-6001                 | í  | 2    |
| HSD/XA<br>Brooks AFB TX 78235-5000                          | 1  | ł    |
| IQ AFESC/DEMM Tyndall AFB FL 32403-6001                     | 1  |      |

| 00-ALC/MME<br>Hill AFB UT 84056-5000      | 1 |
|-------------------------------------------|---|
| OC-ALC/MME<br>Tinker AFB OK 73145-5000    | 1 |
| SA-ALC/MME<br>Kelly AFB TX 78241-5000     | 1 |
| SM-ALC/MME<br>McClellan AFB CA 95652-5000 | 1 |
| WR-ALC/MME<br>Robins AFB GA 31098-5000    | 1 |